
Dynamic Partitioning to Mitigate Stuck-at Faults in

Emerging Memories

Jiangwei Zhang∗†, Donald Kline, Jr †, Liang Fang∗, Rami Melhem‡, and Alex K. Jones†

State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, China∗

Department of Electrical and Computer Engineering, University of Pittsburgh, USA †

Department of Computer Science, University of Pittsburgh, USA ‡

Email: jiz148@pitt.edu, dek61@pitt.edu, lfang@nudt.edu.cn, melhem@cs.pitt.edu, akjones@pitt.edu

Abstract—Emerging non-volatile memories have many ad-
vantages over conventional memory. Unfortunately, many are
susceptible to write endurance challenges, resulting in stuck-at
faults. Existing mitigation methods statically partition and invert
data within a block containing such faults (partition-and-flip)
to ensure data is written to match stuck-at cells such that they
may remain in service. Unfortunately, these schemes have limited
fault tolerance capabilities and require the assumption that their
auxiliary bits are fault free. We propose a dynamic partitioning
scheme that improves the number of tolerated stuck-at faults
and simultaneously protects auxiliary bits. Dynamic partitioning
can significantly improve the fault tolerance over existing static
partitioning approaches with an equal number of auxiliary bits.
Moreover, it can often still improve fault tolerance while reducing
the number of auxiliary bits. Compared to flip-N-write and Aegis,
a leading mitigation scheme, dynamic partitioning can achieve
7-72% and 5-53× lower write error rates, respectively, for the
same capacity overhead with a stuck-at-fault rate of 10

−3.

Index Terms—Emerging Memories, Reliability, Stuck-at
Faults, and Dynamic PartitioninEmerging Memories, Reliability,
Stuck-at Faults, and Dynamic Partitioning

I. INTRODUCTION

DRAM and flash scaling is greatly hindered by physical

limitations, among which limited charge is a major issue

that lowers the retention time and makes the charge sensing

unreliable [1], [2]. Emerging memories such as phase change

memory (PCM) and memristors (RRAM) with great scalabil-

ity, high density, and non-volatility are promising to replace

DRAM and flash as main memory or secondary storage [3]–

[6]. However, before PCM or RRAM becomes a mature

alternative, one of their crucial shortcomings, limited write

endurance, must be conquered [4]. A typical PCM cell can

sustain 108 to 109 writes before it becomes stuck at ‘0’

or ‘1’. While each individual cell has an optimal RESET

current, the minimal current to perform the full reset operation,

each optimal RESET current deviates from the group average

due to process variation. Over-programming, which can be

exacerbated by the variation in optimal RESET current, is a

major cause of early failure of weak cells leading to permanent

stuck-at faults.

When a cell is stuck at a value, the value still can be read,

but can not be changed. When performing a write operation

on a stuck-at bit, if the written value is the same as the

stuck-at value (stuck-at-right, SA-R), an error does not occur,

but if the two values are opposite (stuck-at-wrong, SA-W),

there will be an error. In this case, the written bit can be

stored as its inverse, and be marked as such using a flag

(auxiliary) bit. In this way, whatever the stuck value is, this

bit can still be stored. Partition-and-flip (PAF) schemes [7]–

[9] are approaches that utilize this characteristic of stuck-at

faults. They first use an efficient method to partition SA-

Rs and SA-Ws into different groups, and then invert groups

with any SA-W, setting the flag bits appropriately. Among the

representative PAF schemes, flip-N-write [7] is the simplest

but it is insufficient to protect memory with high fault rates,

while Aegis [9] has more complex partitioning methods but is

very efficient at fault mitigation.

Encoding and correction (EAC) schemes represent another

approach that can be used to mitigate stuck-at faults; the

methods which comprise this approach include error correction

coding (ECC) [10], coset encoding [11], and PRES [12]. ECC

is typically employed to protect memory against transient or

bus-related faults, which are rare relative to stuck-at faults in

PCM or RRAM. Another correction scheme, error correction

pointers (ECP) [13] uses a pointer to address the stuck-at

bit and an extra bit to replicate the data within its protected

data block. Though ECP is effective to tolerate stuck-at faults,

the high capacity overhead is always a burden for memory,

compared to PAF schemes [9].

In this paper, we propose a partition method that dynam-

ically changes the grouping of bits to mitigate more stuck-

at faults in a data block. It protects the auxiliary bits and

improves the effectiveness of the existing PAF schemes by

generating more efficient configurations. The paper makes the

following contributions:

1) It proposes a dynamic partition scheme to tolerate stuck-

at faults which can be applied to several existing parti-

tioning schemes to enhance their effectiveness

2) It describes applications of the dynamic partition scheme

to flip-N-write and Aegis, showing the great adaptability

of the proposed scheme

3) It provides a characterization of the recovery from stuck-

at faults of the dynamic schemes and conducts an

extensive study, illustrating the significant improvements

brought by the dynamic partitioning strategy

978-1-5386-3093-8/17/$31.00 ©2017 IEEE 651

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2021 at 09:03:13 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND

Error Correction Codes (ECC) [10] are general approaches

that are used to protect memories from transient faults, but

can also be applied to correct stuck-at faults. Among these

ECC schemes, the (72, 64) Hamming Coding scheme is the

most frequently used. When it is applied in a scenario where

it is used to correct stuck-at faults, it can recover one SA-

W and tolerate any SA-R within those 72 bits. When the

fault rate of the memory is below a threshold of 10−6, this

scheme is sufficient for fault recovery [14], but when the rate

exceeds the threshold, this scheme is not adequate. PCM and

RRAM face the problem of device variations, causing the

endurance of weak cells to be much lower than the average

level, leading to their early failures. Moreover, the auxiliary

bits in the ECC schemes are written more frequently than data

bits, so ECC is not suitable for protecting stuck-at faults in

emerging memories like PCM and RRAM.

The error correction pointers (ECP) [13] scheme uses sev-

eral bits as a pointer to record the address of a faulty bit and

an extra bit to store the data as a replacement. In addition to

these bits, ECP also needs one bit to mark whether all of the

pointers are in use. In a 512-bit data block, to protect N faulty

bits, ECP needs N×10+1 bits to ensure protection. However,

this calculation is based on the assumption that the auxiliary

bits are not faulty. A SA-W fault in a pointer of ECP requires

two fault-free pointers to fix the error: one to point to the

original intended location of the first pointer, and the other

to point to the location the first pointer mistakenly overwrote.

While this provides some level of protection to the ECP bits, it

is usually insufficient with few pointers and/or for large error

rates.

Partition-and-flip (PAF) schemes leverage the knowledge

that the stuck-at faults are still readable, and can store the

correct data as long as it aligns with the stuck-at value. Flip-N-

write (FNW) [7] was originally developed for reducing energy

by minimizing bit changes between a currently stored value

and the new value intended to be written. FNW is amongst the

simplest PAF schemes. While FNW has a straightforward and

low overhead implementation, it can be ineffective when faults

are clustered. Despite this limitation, many existing schemes

have utilized FNW as a base operation for a more complicated

partitioning scheme, including RDIS [15], SAFER [8], and

Aegis [9].

RDIS transforms an one-dimensional (1D) data block into

a two-dimensional (2D) matrix. Each row or each column

might be inverted if there are stuck-at faults by using a flag bit

to record the information of its inversion status. Because of

the advantage of a 2D matrix putting each bit in two groups

simultaneously, this scheme may tolerate more than one stuck-

at fault which are in the same row or column. The shortcoming

of this scheme is the large capacity overhead. For a 512-

bit data block, it needs at least 46 flag bits, a 9% capacity

overhead, even when the fault rate is not high.

SAFER and Aegis use relatively complex but efficient

partitioning methods to partition stuck-at faults into different

Fig. 1: An example of Aegis partitioning of a 32-bit block into

7 × 5 matrices with different slopes. Each bit is represented

by a symbol except for the three dotted ones on the top right

(not used). Different symbols represent different groups of the

partitioning. In total, there are 7 configurations corresponding

to 7 slopes, i.e. k ranges from 0 to 6.

groups, which are then protected by one FNW flag bit per

group. SAFER starts with a maximum number of available

group partitions. Whenever a new fault occurs, the groups are

repartitioned according to the XOR of the pointers to the fault

locations in the data blocks, aiming to partition the stuck-at

faults so that the maximum number of stuck-ats per group

is one. If the number of faults is larger than the maximum

number of groups, SAFER cannot always guarantee correction.

Aegis interprets a 1D data block as a 2D matrix. Inspired

by the principle that any two points in a line on a Cartesian

plane determine the slope of the line, Aegis uses different

slopes to generate different configurations (partitions) ensuring

that all possible combinations of two bits which are in the

same group of one configuration would not be in the same

group of the other configurations. In Figure 1, as an example,

we illustrate how to partition a 32-bit data block into 7 × 5
matrices according to Aegis. If there are N stuck-at faults in

a data block, Aegis guarantees the faults will be partitioned

into different groups when there are at least (N − 1)N/2 + 1
configurations [9]. Compared to SAFER, Aegis is superior

because it creates a better distribution of stuck-at faults with

equivalent capacity overhead.

III. DYNAMIC PARTITIONING SCHEME

Our dynamic partitioning scheme aims to distribute stuck-at

faults to different groups by dynamically changing partition

sizes and orientations within an existing PAF scheme to

improve the fault-tolerating effectiveness without increasing

the capacity overhead. Leveraging variable sized partitions can

diversify the correction capability of existing partition based

schemes. Dynamic partitioning is accomplished by splitting

the auxiliary bits into two segments: the first segment, S1,

specifies how many unique partitions are used; the second

segment, S2, contains the auxiliary bits needed to flip each

of the groups within the partition.

652

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2021 at 09:03:13 UTC from IEEE Xplore. Restrictions apply.

A. Dynamic FNW

FNW is implementable with low capacity overhead, but it

has only one configuration for a given partition size. If the

dynamic partitioning strategy is applied to FNW, any one of

a number of different partitions can be used to improve the

scheme’s effectiveness.

Dynamic partition-based FNW (FNWDY) is a simple and

effective application of our dynamic partitioning scheme. We

first briefly describe the static FNW scheme. For a 512-bit data

block with 10 auxiliary bits (N = 10), every 52 adjacent bits

will be treated as being in the same group. Each group has a

corresponding auxiliary bit, which indicates whether the entire

group is flipped or not to attempt to avoid writing any SA-

W in the block. Unfortunately, FNW cannot protect against

stuck-at faults when there is at least one SA-R and one SA-W

together in one group, or when there is one SA-W or SA-R

bit in a group while the auxiliary bit for that group is stuck-at

‘0’ or ‘1’.

Figure 2 is an example to demonstrate how FNWDY would

protect a 24-bit data block of data assuming 10 auxiliary bits.

Among the auxiliary bits, two bits in S1 are used to identify

the number of groups used in the partition and the remaining

eight bits in S2 control the inversion. The bits in S1 count

down from the maximum number of partitions, in this case

eight. Thus for the example, the data can be partitioned into

eight, seven, six, and five groups. Note that partitions with 1,

2, 3 or 4 groups do not provide any benefit as a partition with

k groups cannot mitigate more faults in a data block than a

partition with a multiple of k groups.

The figure displays two group partitioning options ‘00’ rep-

resents an 8-group partition (8-0) in the data block, while ‘10’

represents a 6-group partition (8-2). In the 24-bit data block,

the bits are labeled from 0 to 23. Dotted lines and solid lines

correspond to boundaries of 8-group and 6-group partitions,

respectively. In S2 of the auxiliary bits, ‘X’ indicates that the

stuck-at faults within that data group cannot be corrected,

while ‘d’ (don’t care) means that the value of the auxiliary

bit does not matter because the data group could be stored as

original or inverted. In the data block, ‘W’ and ‘R’ represent

SA-W and SA-R, respectively. The 8 sets of curved lines

which connect two memory cells indicate the cases where

the 6-group partition can tolerate a SA-W and SA-R, but

the 8-group partition fails to correct them. For example, bits

‘15’ and ‘16’ (marked in purple and are SA-W and SA-R,

respectively) can be tolerated by the 6-group partition with

the fourth group inverted and the fifth group not inverted, but

cannot be mitigated by the 8-group partition because these two

bits are in the same group (the corresponding flag bit is marked

as ‘X’). Similarly, bits ‘2’ and ‘3’ can always be corrected by

the 8-group partition, but cannot be corrected by the 6-group

partition.

In general, for a large block, using several bits to indicate the

partition can be more beneficial than using those bits to have a

smaller but fixed partition size with several extra groups. Note

that the number of bits in S1 can be adjusted according to

Fig. 2: Illustration of dynamic FNW protecting a 24-bit data

block with 10 auxiliary bits, and cases where a smaller FNW

partition size can outperform a larger one.

different data block sizes and overhead capacity. For example,

for a 512-bit data block, when there are 21 overhead bits, 3

auxiliary bits can be used to record different configurations.

B. Dynamic Aegis

The number of configurations available to Aegis is deter-

mined by the width of the 2D rectangle used to organize

the bits in the data block. The partitioning of Aegis has

two restrictions on this rectangle width: it needs to be a

prime number, and this prime number must be greater than

or equal to the length of the rectangle. Using widths with

these characteristics ensures for Aegis that any two bits in

the same group of one configuration will not be in the same

group in another configuration. The dynamic partition strategy

applied to Aegis does not limit itself to prime widths, using

multiple combinations of prime and non-prime widths for

a larger number of available partition configurations. Our

dynamic partitioning strategy enhances the existing advantages

of Aegis over competing partitioning schemes such as SAFER

and RDIS.

Figure 3 illustrates how a 32-bit data block is partitioned

into different configurations according to Static (Original)

Aegis and Dynamic Aegis (AegisDY). For this block size, Aegis

uses 10 auxiliary bits for fault correction, including 7 flag bits

and 3 slope bits. For each slope, the data block is partitioned

into a 7 × 5 matrix. The lengths (A) and the widths (B) of

the matrices are marked, while the available slopes (k) are also

shown. The numbers for the bits in the matrices represent their

group identifiers (ID) for the slope shown in red and recorded

in the slope bits (‘000’). The bits labeled ‘X’ are bits which

are not in the 32 bit data block.

In the case shown, AegisDY uses 2 bits in S1 and the other 8

bits in S2. S2 is then partitioned into two subsegments, the flag

bits and slope bits. The 2 bits in S1 represent the size of the

matrix available, such as ‘10’ for the 6×6 matrix. The number

of slopes for each partition size is limited by the bits left over

after removing the flag bits needed for the number of groups.

For example, the 6 × 6 matrix has 2 bits available as slope

bits (4 slopes), when it could have used 6 different slopes,

and the 5 × 7 matrix has 3 bits available (5 slopes) limited

by the number of groups (5) in the matrix. Because the group

partitioning encoded in S1 ranges from 8 to 5, the number of

653

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2021 at 09:03:13 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Illustrating how to partition a 32-bit data block into different configurations according to (a) Static (Original) Aegis

and (b) Dynamic Aegis.

Fig. 4: An implementation logic to know the ID of a stuck-

at fault at a specific data in S1 and an available slope for

AegisDY. A 49 × 32 size ROM and a 49 × 7 ROM are used

as lookup tables.

available configurations equals 1+2+4+5=12, as compared to

Aegis, which only has 7 configurations.

In Figure 4, we show encoding logic for a 32-bit data block

to know the ID of a stuck-at fault at a specific width in S1

and an available slope for AegisDY. For each stuck-at fault,

we can get the corresponding ID. If there is any ID collision

of SA-R and SA-W, we increment the slope counter. If the

Fig. 5: An implementation logic to know which bits among a

32-bit data block should be written in their inverted forms. A

49× 32 size ROM is used as a lookup table.

slope surpasses the maximum available value at the data in

S1 (see Figure 3), we increment the width counter and reset

the slope. In this manner, we search the possible data patterns

in S1 and their corresponding available slopes until we find

a configuration where no collision happens, which tolerates

all the stuck-at faults in the block. The worst case encoding

includes the traversal of all possible configurations, but in

practice for lower error rates, this process needs to be repeated

very few times. In Figure 5, we also display the decoding

654

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2021 at 09:03:13 UTC from IEEE Xplore. Restrictions apply.

logic to know which bits among a 32-bit data block should

be written in their inverted forms. Note that decoding is more

efficient than encoding because it only needs to perform one

lookup. In each implementation, we use a ROM lookup table

to record the relationship between the input and the output

information. The ROM capacity overhead is discussed as part

of the following section.

IV. EVALUATION

To validate our proposed dynamic partitioning strategy, we

evaluate its effectiveness for both FNWDY and AegisDY, by

comparing with their static counterparts of FNW and Aegis

and baselines of ECP and ECC. Our experiments consider

stuck-at fault rates of 10−3 and 10−4 with different auxiliary

bits. Additionally, we provide a sensitivity study of stuck-at

faults rates of 10−5 and 10−6.

A. Experimental Methodology

We developed a PIN-based simulator [16] and implemented

ECC, ECP, FNW, FNWDY, Aegis, and AegisDY to evaluate

their tolerance to stuck-at faults. The PIN simulator evaluates

main memory writes by encoding or partitioning the data block

and the auxiliary bits, and recording a fault if the value of

any fault bit being written is opposite to its stuck-at value.

To model the stuck-at faults, a fault map, including fault bits

stuck at ‘0’ or ‘1’, is developed by using Bayesian distribution

to mimic the impact of process variation and includes spatial

correlation of faults [17], [18]. In particular for this work we

followed the model described in [17] to generate maps of weak

cells for a 4GB PCM.

1) Model Implementation Details: In our evaluation, stuck-

at faults can be tolerated in a data block for each of the

schemes as follows:

1) For a Hamming code based error correction (ECC-164),

one SA-W and any number of SA-Rs can be tolerated

in each data block or its parity bits.

2) For ECPN , N SA-Ws can be tolerated in the data block

assuming no SA-Ws compromise the auxiliary bits.

3) For FNW, there is no group that has both SA-Ws and

SA-Rs in the group’s data and its corresponding flag

(encoding) bit.

4) For FNWDY, there is a configuration that no group of the

configuration has both SA-Ws and SA-Rs in the group

data and its corresponding flag bit. The auxiliary bits (in

S1) to record the group partitioning may not have any

SA-Ws.

5) For Aegis, there is a configuration that no group of the

configuration has both SA-Ws and SA-Rs in the group

data and its corresponding flag bit. The slope bits may

not have any SA-Ws.

6) For AegisDY, there is a configuration that no group

has both SA-Ws and SA-Rs in the group data and its

corresponding flag bit. The auxiliary bits in S1 and the

slope bits in S2 may not have any SA-Ws.

The data block size examined in the study was 512 bits.

For FNW, FNWDY, and AegisDY, we used 10, 15, 21, 28,

and 36 overhead bits per data block to tolerate stuck-at faults.

These overhead ratios are 1.96%, 2.93%, 4.10%, 5.47%, and

7.03%, respectively. Aegis required a minimum of 23-bit

encoding overhead for a 512-bit block to guarantee that each

possible slope would have valid partitioning as discussed in

section III-B. For fewer encoding bits, this correction can not

be guaranteed as the group size is not sufficiently large to

guarantee independent slopes, however, it is still effective. For

comparison, we relax this requirement and also allow Aegis

to use 10, 15, and 21 auxiliary bits per data block, generated

in the same manner as described in [9].

For comparison we provide results for ECC-164, which

requires 64 bits per data block, with an additional eight parity

bits for one-bit error correction and two-bit error detection,

corresponding to an overhead ratio of 12.5%1. ECPN requires

N×10+1 bits per data block. We compare our proposed

schemes with ECPN such that ECP requires the minimum

auxiliary bits that exceeds the auxiliary bits of our scheme

(e.g., a 15-bit encoding would compare to ECP2 that requires

21 bits).

In our experiments we perform two kinds of evaluations.

First, we evaluate the memory accesses for the PARSEC

benchmark suite for different fault maps. The entire bench-

mark suite is executed and error rate is determined by accesses

with uncorrectable errors compared to total accesses. Second,

we calculate what we call a “true random error rate” which we

define as the error rate if a perfect distribution of all possible

values were applied to each location of a fault map through

an exhaustive search. For each fault rate, we use the average

error rates for five fault maps to evaluate and compare the

effectiveness of the different fault recovery schemes.

2) Hardware Implementation of AegisDY : To provide an

ISO-overhead comparison for dynamic encoding for Aegis,

we implemented the encoding and decoding look-up tables

(ROMs) for Aegis and AegisDY in 45nm CMOS technology

shown in Table I. This was generated by running the ROM

lookup table designs in Synopsis Design Compiler targeting

a 45nm FreePDK [19]. AegisDY contains more configuration

options for identical bit overhead, and thus requires additional

look-up table area. The encoding latency reported is for

evaluating one data partitioning option; while encoding for

Aegis or AegisDY multiple encoding options may need to be

explored to find a successful encoding which partitions SA-Rs

and SA-Ws into separate groups. However, encoding is not on

the critical path, and for lower error rates it is rare to require

many encoding attempts.

Table I also enumerates the area and latency comparisons

for decoding. For both 28 and 36 auxiliary bits, AegisDY

has a significant increase in latency over Aegis, while 15

and 21 auxiliary bits in AegisDY has approximately the same

delay as 28 and 36 bits for Aegis, respectively. In the fol-

lowing evaluation, we will demonstrate that even for these

1We also considered ECC-1256 to achieve a similar overhead (auxiliary
bits) compared to Aegis and FNW. However, ECC performed so poorly and
it was more appropriate to compare with the more common (64,72) ECC at
higher overhead.

655

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2021 at 09:03:13 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Area and latency comparisons between Aegis and

AegisDY ROMs for encoding and decoding (Minimum Area

Implementation).

ENCODING DECODING

Aux Opt Area
um

2 Latns Area
um

2 Latns

10 7 1.33·104 1.87 1.31·104 1.34

15 11 4.37·104 2.56 4.20·104 1.73

Aegis 21 17 1.10·105 2.90 1.06·105 1.91

28 23 1.69·105 3.12 1.61·105 1.98

36 31 2.29·105 4.51 2.13·105 2.57

10 12 3.26·104 2.59 3.17·104 1.85

15 41 1.16·105 2.91 1.12·105 1.97

AegisDY 21 65 2.66·105 4.32 2.57·105 2.77

28 88 4.02·105 3.72 3.77·105 2.72

36 112 8.78·105 7.11 8.25·105 3.94

iso-performance comparisons, AegisDY can achieve improved

reliability compared to Aegis.

B. Benchmark Evaluation

In this section, we evaluate the effectiveness of the error

mitigation strategies described in Section IV-A1 for the PAR-

SEC benchmark suite. We obtain the error rates for initial

stuck-at-fault rates of 10−3 and 10−4 shown in Figure 6 and

7, respectively. In each figure the fault mitigation schemes are

compared to a baseline of ECC-164 shown with a green line.

For the 10−3 initial stuck-at-fault rate (Figure 6) all the

schemes outperform ECC-164 even though it requires the

largest capacity overhead. While FNW does not obviously

improve over ECC-164, FNWDY does provide improvements

over static FNW for 10 and 15 auxiliary bits cases with

larger improvement margins for 28 and 36 auxiliary bits,

amounting to a 64% and 90% improvement, respectively.

Recalling that (apart from 21 auxiliary bits), ECPN uses

slightly more auxiliary bits than the other schemes, ECPN

outperforms both ECC-164 and FNWDY but is far inferior to

Aegis, which achieves more than a 20× improvement over the

next leading candidate. However, our dynamic partitioning,

AegisDY, far outstrips Aegis. With 10 and 15 auxiliary bits,

AegisDY achieves 5× and 372× lower error rates than its

static counterpart, respectively. When there are 21 auxiliary

bits, AegisDY completely recovers from all the stuck-at faults

in the fault maps, while static Aegis still has a higher than

10−5 error rate. They both achieve perfect protection when

there are 28 and 36 auxiliary bits.

For an initial stuck-at-fault rate of 10−4 (Figure 7), we see

a similar trend, as the 10−3 case, except that ECC-164 is more

effective than FNW, and FNWDY with a minimum of 28 bits is

necessary to achieve a better result. Unsurprisingly, Aegis and

AegisDY achieve perfect protection with fewer auxiliary bits,

while only static Aegis with 10 auxiliary bits sees any faults,

but still achieving an uncorrectable error rate of 10−5. While

for the same number of auxiliary bits, clearly AegisDY provides

better protection than static Aegis, a method to distinguish

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00
10 15 21 28 36

Auxiliary bits

Error Rates @Fault rate=10-3

ECP FNW FNW AEGIS AEGIS ECC1

(No fault detected)

FNWDY AEGISDY ECC164

10 15 28 36

Fig. 6: Comparisons of different recovery schemes on the

PARSEC benchmarks for a 10−3 fault rate.

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00
10 15 21 28 36

Auxiliary bits

Error Rates @Fault rate=10-4

ECP FNW FNW AEGIS AEGIS ECC1

(No fault detected)

FNWDY AEGISDY ECC164

10 15 28 36

Fig. 7: Comparisons of different recovery schemes on the

PARSEC benchmarks for a 10−4 fault rate.

lower uncorrectable error rates is necessary. We make this

comparison with a probabilistic study in the next section.

C. Probabilistic Evaluation

In this evaluation, we simulate all possible data patterns

in every row of the generated memory model and discover

the “true error rates” of a perfectly even data distribution

and to distinguish lower error rates than exhibited through

benchmark evaluation. Using true error rates, first, we compare

the effectiveness of the error correction schemes with ISO

auxiliary bits. Second, we compare the effectiveness of the

dynamic schemes with their counterparts for an ISO perfor-

mance comparison. The ISO performance comparison also

provides an advantage as it requires a lower auxiliary bit

storage overhead for AegisDY.

1) ISO Auxiliary Bits Comparison: Figure 8 and 9 show

the comparisons of the various recovery schemes at the initial

fault rates of 10−3 and 10−4, respectively. FNWDY protected

68% and 72% more data patterns than static FNW with 28

auxiliary bits at the two fault rates, while the improvements

are 66% and 70% with 36 auxiliary bits demonstrating the

value of the dynamic partitioning strategy. For Aegis, dynamic

partitioning is even more striking, with AegisDY obtaining 14×
and 47× lower error rates, respectively, at the two fault rates

for 28 auxiliary bits, and 21× and 120× lower error rates,

respectively, for 36 auxiliary bits.

656

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2021 at 09:03:13 UTC from IEEE Xplore. Restrictions apply.

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00
10 15 21 28 36

Auxiliary bits

Error Rates @Fault rate=10-3

ECP FNW FNW AEGIS AEGIS ECC1FNWDY AEGISDY ECC164

10 15 28 36

Fig. 8: Comparisons of different recovery schemes at fault rate

10−3 using ISO auxiliary bits.

1.E-09
1.E-08
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00

10 15 21 28 36

Auxiliary bits

Error Rates @Fault rate=10-4

ECP FNW FNW AEGIS AEGIS ECC1FNWDY AEGISDY ECC164

10 15 28 36

(No fault detected)

Fig. 9: Comparisons of different recovery schemes at fault rate

10−4 using ISO auxiliary bits.

In Figures 8 and 9, the correction capabilities shown for

Aegis with 28 auxiliary bits are larger than those for Aegis

with 36 auxiliary bits, which is counterintuitive. The source

of this problem is faults in the auxiliary bits: when the

same simulation was run with the auxiliary bits never able

to have faults, the results were identical to those shown in [9].

Further, Aegis has a fundamental limitation with weaknesses

in auxiliary bits: bits which are always in the same number

group (e.g. the first bit of each group) can never be fixed if the

auxiliary bit for that group has a stuck-at fault which prevents

that group from being fixed. Moving from 28 to 36 adds 8

more groups, and thus contributes to this error. Note that for

AegisDY, this does not occur except the bottom left bit.

To illustrate this advantage we compare the error rates of

the static and dynamic schemes in Table II. In the table,

FR is the initial fault rate, Both refers to faults corrected by

both the static and dynamic schemes, Dynamic refers to faults

only corrected by the dynamic scheme, Static refers to faults

corrected only by the static scheme, and Neither refers to faults

uncorrectable by either scheme. If the Dynamic column is

much larger than the Static column, it illustrates superiority of

the dynamic scheme. For FNW, the numbers for FNWDY are

21× larger than static FNW, on average. For Aegis, AegisDY

is 64× better than static Aegis at stuck-at-fault 10−3, while

AegisDY achieves perfect protection but Aegis still fails to

protect few data patterns at stuck-at-fault 10−4.

TABLE II: Comparisons of FNWDY and AegisDY with their

static counterparts. ‘none’ means no fault detected for five

256MB fault maps.

FR Aux Both Dynamic Static Neither

FNW

10
−3

28 0.96 1.48·10−2 8.70·10−4 1.97·10−2

36 0.97 1.38·10−2 5.03·10−4 1.96·10−2

10
−4

28 0.998 1.00·10−3 6.00·10−5 1.24·10−3

36 0.998 9.37·10−4 3.57·10−5 1.24·10−3

Aegis

10
−3

28 0.999987 1.17·10−5 7.16·10−7 6.76·10−7

36 0.999983 1.66·10−5 1.45·10−7 6.52·10−7

10
−4

28 1-4.83·10−8 4.83·10−8 none none

36 1-1.21·10−7 1.21·10−7 none none

TABLE III: Improvement ratio in fault rate of AegisDY over

Aegis for different auxiliary bits at an initial stuck-at rate

of 10−3. For example, 4.75 indicates the fault rate of Aegis

divided by the fault rate of AegisDY is 4.75, at the respective

auxiliary bits.

Aegis Aux

AegisDY Aux 10 15 21 28 36

10 6.41 1.71 0.15 0.05 0.07

15 — 54.07 4.75 1.60 2.22

21 — — 38.85 13.07 18.17

28 — — — 14.69 20.41

36 — — — — 21.65

* Configurations within 10% decoding latency are shown in bold
and italics

2) ISO Performance Comparison: Due to the marked supe-

riority of the dynamic strategy, AegisDY can achieve improved

effectiveness over its static counterpart while maintaining

performance (latency) with fewer auxiliary bits. In Table III,

we show the improvement of AegisDY over Aegis at the initial

fault rate of 10−3 with equivalent or reduced auxiliary bits. We

mark configurations within 10% of decoding latency overhead

(see Table I) in bold and italics. For example, the error rate of

AegisDY with 15 auxiliary bits is as 1.60× lower as the rate

of Aegis with 28 auxiliary bits at equivalent decoding latency.

FNWDY has a similar advantage over FNW, but the detailed

comparison is not shown in the paper due to page limitations.

D. Sensitivity Study for Lower Fault Rates

In this study, we expand the range of the fault rate of the

memory model to lower initial fault rates of 10−5 and 10−6,

shown in Figure 10 and 11, respectively. At both fault rates,

FNW fails to improve of ECC-164, only equivalent to it for

FNWDY with 28 and 36 auxiliary bits, and even worse com-

paring to ECPN as expectation. Aegis and AegisDY continue to

be dramatically more effective than the other schemes with at

least two and three exponential orders improvement in uncor-

rectable error rates than ECPN , respectively. At the fault rate

10−5, AegisDY significantly outperforms static Aegis using 10

auxiliary bits with a 15× improvement. When there are at least

15 auxiliary bits, AegisDY achieves perfect protection, while

Aegis achieves this goal using at least 28 auxiliary bits. At

657

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2021 at 09:03:13 UTC from IEEE Xplore. Restrictions apply.

1.E-09
1.E-08
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00

10 15 21 28 36

Auxiliary bits

Error Rates @Fault rate=10-5

ECP FNW FNW AEGIS AEGIS ECC1FNWDY AEGISDY ECC164

10 15 28 36

(No fault detected)

Fig. 10: Comparisons of different recovery schemes at fault

rate 10−5 using ISO auxiliary bits.

1.E-09
1.E-08
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00

10 15 21 28 36

Auxiliary bits

Error Rates @Fault rate=10-6

ECP FNW FNW AEGIS AEGIS ECC1FNWDY AEGISDY ECC164

10 15 28 36

(No fault detected)

Fig. 11: Comparisons of different recovery schemes at fault

rate 10−6 using ISO auxiliary bits.

the fault rate 10−6, Aegis and AegisDY protect all possible

accesses, while the other schemes fail to achieve this goal.

V. CONCLUSION

Endurance limitations is a significant challenge for mass

commercialization of several emerging non-volatile memories,

including PCM and RRAM. This is especially problematic

when more cells become potentially faulty due to technology

scaling and resulting process variation. We presented our

proposed dynamic partitioning approach to mitigate stuck-

at faults in these emerging memories. Dynamic partitioning

recovers more stuck-at faults in a data block by increasing

the number of possible partitions, thus improving over static

partition-and-flip schemes. Our results, including benchmark

and probabilistic evaluations, show that dynamic partitioning

significantly improves the effectiveness of FNW and Aegis

over their static counterparts by generating more efficient con-

figurations. Aegis has the shortcoming that when the first bit

of a group and its corresponding flag bit are stuck at opposite

values, this scheme cannot mitigate the faults for any slope.

This problem might be solved by carefully rearranging the

lookup table (ROM). Dynamic Aegis can also further improve

its effectiveness by intelligently selecting slopes. For example,

for the 6x6 grid shown in Figure 3(b), slope 3 overlaps

significantly with slope 0, but it could be replaced with slope

5, which has much fewer overlaps with the preceding slopes.

As there are some relatively infrequent cases where the

static scheme can correct faults uncorrectable in our dynamic

approach, it is possible to incorporate a static scheme into

our dynamic scheme by using one extra bit as a record in

each data block. Our evaluation shows that the extra tolerance

provided by the original static scheme is negligible compared

to the uncorrectable error rate. However, this could be explored

further in future work.

VI. ACKNOWLEDGEMENTS

This work is supported by National Natural Science Foun-

dation of China Grant No. 61332003 and US National Science

Foundation Graduate Research Fellowship Grant No. 1247842.

REFERENCES

[1] K. Kim, “Technology for sub-50nm DRAM and NAND flash manufac-
turing,” Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE

International, pp. 323–326, IEEE, 2005.
[2] S. Li, P. Wang, N. Xiao, G. Sun, and F. Liu, “SPMS: Strand based

persistent memory system,” DATE, pp. 622–625, IEEE, 2017.
[3] O. Zilberberg, S. Weiss, and S. Toledo, “Phase-change memory: An

architectural perspective,” ACM Computing Surveys (CSUR), Vol. 45,
No. 3, No. 3, p. 29, 2013.

[4] C. J. Xue, G. Sun, Y. Zhang, J. J. Yang, Y. Chen, and H. Li, “Emerging
non-volatile memories: opportunities and challenges,” CODES+ISSS,
pp. 325–334, IEEE, 2011.

[5] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Ra-
jendran, M. Asheghi, and K. E. Goodson, “Phase change memory,”
Proceedings of the IEEE, Vol. 98, No. 12, No. 12, pp. 2201–2227, 2010.

[6] H. Zhang, N. Xiao, F. Liu, and Z. Chen, “Leader: Accelerating ReRAM-
based main memory by leveraging access latency discrepancy in crossbar
arrays,” DATE, pp. 756–761, 2016.

[7] S. Cho and H. Lee, “Flip-N-Write: A simple deterministic technique
to improve PRAM write performance, energy and endurance,” MICRO,
pp. 347–357, IEEE, 2009.

[8] N. H. Seong, D. H. Woo, V. Srinivasan, J. A. Rivers, and H.-H. S. Lee,
“SAFER: Stuck-at-fault error recovery for memories,” MICRO, pp. 115–
124, 2010.

[9] J. Fan, S. Jiang, J. Shu, Y. Zhang, and W. Zhen, “Aegis: Partitioning data
block for efficient recovery of stuck-at-faults in phase change memory,”
MICRO, pp. 433–444, 2013.

[10] R. W. Hamming, “Error detecting and error correcting codes,” Bell Labs

Technical Journal, Vol. 29, No. 2, No. 2, pp. 147–160, 1950.
[11] A. N. Jacobvitz, R. Calderbank, and D. J. Sorin, “Coset coding to extend

the lifetime of memory,” HPCA, pp. 222–233, IEEE, 2013.
[12] S. M. Seyedzadeh, R. Maddah, D. Kline, A. K. Jones, and R. Melhem,

“Improving bit flip reduction for biased and random data,” IEEE

Transactions on Computers, Vol. 65, pp. 3345–3356, 2016.
[13] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ECP, not

ECC, for hard failures in resistive memories,” ACM SIGARCH Computer

Architecture News, Vol. 38, pp. 141–152, ACM, 2010.
[14] P. J. Nair, D.-H. Kim, and M. K. Qureshi, “ArchShield: Architectural

framework for assisting DRAM scaling by tolerating high error rates,”
ACM SIGARCH Computer Architecture News, Vol. 41, pp. 72–83, ACM,
2013.

[15] R. Melhem, R. Maddah, and S. Cho, “RDIS: A Recursively Defined
Invertible Set Scheme to Tolerate Multiple Stuck-at Faults in Resistive
Memory,” DSN, pp. 1–12, 2012.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” Acm sigplan

notices, Vol. 40, pp. 190–200, ACM, 2005.
[17] Z. Al-Ars, DRAM fault analysis and test generation. TU Delft, Delft

University of Technology, 2005.
[18] T. Yuan, S. Z. Ramadan, and S. J. Bae, “Yield prediction for integrated

circuits manufacturing through hierarchical Bayesian modeling of spatial
defects,” Transactions on Reliability 2011.

[19] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis,
P. D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, et al., “FreePDK:
An open-source variation-aware design kit,” MSE, pp. 173–174, 2007.

658

Authorized licensed use limited to: Tsinghua University. Downloaded on April 23,2021 at 09:03:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

