
Fault-Tolerant Training with On-Line Fault Detection for
RRAM-Based Neural Computing Systems

Lixue Xia1, Mengyun Liu2, Xuefei Ning1, Krishnendu Chakrabarty2, Yu Wang1

1 Dept. of E.E., Tsinghua National Laboratory for Information Science and Technology (TNList),
Tsinghua University, Beijing, China

2 Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
e-mail: yu-wang@mail.tsinghua.edu.cn

ABSTRACT
An RRAM-based computing system (RCS) is an attractive hard-
ware platform for implementing neural computing algorithms. On-
line training for RCS enables hardware-based learning for a given
application and reduces the additional error caused by device pa-
rameter variations. However, a high occurrence rate of hard faults
due to immature fabrication processes and limited write endurance
restrict the applicability of on-line training for RCS. We propose
a fault-tolerant on-line training method that alternates between a
fault-detection phase and a fault-tolerant training phase. In the
fault-detection phase, a quiescent-voltage comparison method is u-
tilized. In the training phase, a threshold-training method and a
re-mapping scheme is proposed. Our results show that, compared
to neural computing without fault tolerance, the recognition accu-
racy for the Cifar-10 dataset improves from 37% to 83% when us-
ing low-endurance RRAM cells, and from 63% to 76% when using
RRAM cells with high endurance but a high percentage of initial
faults.

1. INTRODUCTION
Machine learning is now widely used in a variety of domains,

and brain-inspired neural computing is considered to be one of the
most powerful applications of machine learning. To ensure that
neural network algorithms are feasible in practice, hardware imple-
mentations require high computing capability and energy efficien-
cy. However, CMOS technology is faced with the bottlenecks of
scaling limitations and the “memory wall” for von Neumann ar-
chitectures [1]. Consequently, the energy efficiency gap between
application requirements and hardware implementation continues
to grow.

Emerging devices such as metal-oxide resistive random-access
memory (RRAM) and its associated crossbar array structure pro-
vide the basis for a promising architecture for brain-inspired cir-
cuits and systems. By exploiting the crossbar structure, an RRAM-
based computing system (RCS) can realize vector-matrix multi-
plication in analog form and reduce the computational complexity
from O(n2) to O(1). Moreover, since RRAM provides memory for
data storage, RCS provides an attractive solution for computing-
in-memory. This architecture eliminates the high data transporta-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’17, June 18-22, 2017, Austin, TX, USA
c© 2017 ACM. ISBN 978-1-4503-4927-7/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3061639.3062248

tion overhead that is inherent to von Neumann architectures; there-
fore, it significantly boosts energy efficiency, particularly for neural
computing applications [2].

RRAM faults may occur during both chip fabrication and data
processing. RRAM faults can be classified as soft faults and hard
faults [3]. For soft faults, the resistance of the RRAM cell can still
be tuned, but the actual resistance is different from the expected val-
ue. Soft faults are caused by variations associated with fabrication
techniques and write operations [4]. For hard faults, the resistance
of an RRAM cell cannot be changed; this category includes the
stuck-at-0 (SA0) and stuck-at-1 (SA1) faults caused by fabrication
techniques [5] and limited endurance [6]. A traditional RCS re-
lies on off-line training, which first trains a network based on RCS
and then maps the trained network on to RRAM arrays. In such
an approach, the recognition accuracy for the network application
is limited by both soft and hard faults that occur in each RRAM
cell [7].

One approach to tolerate RRAM faults in an RCS is to use an on-
line training scheme, which trains a neural network using the output
of the RCS [7]. This method can tolerate soft faults by utilizing the
inherent fault tolerance capability in neural computing algorithms.
However, hard faults still limit the performance of on-line train-
ing due to the following reasons: 1) fabrication defects cannot be
adequately tolerated by on-line training because the training proce-
dure always attempts to tune some RRAM cells with a SA0/SA1
fault caused by fabrication, and 2) the limited write endurance of
RRAM cells can lead to an increasing number of RRAM cells with
a SA0/SA1 fault during the training procedure, and thereby result
in decreased accuracy of RCS. Since we need to train another net-
work in order to change the neural computing applications for RCS,
most cells will become faulty after repeated write operations.

Researchers have shown that more than 50% of the weights in
neural networks can be fixed to zero [8], which motivates us to
further use neural algorithms to tolerate not only soft faults but
also hard faults on RRAM. Two challenges arise in fault-tolerant
on-line training in the presence of hard faults. First, we need to
know the distribution of faults in RRAM cells during training. The
test time of traditional test methods increases quadratically with the
number of rows (columns) of the RRAM crossbar [9], and this is
a key limiter for on-line testing. Second, traditional redundancy-
based methods for memory design cannot be utilized to target hard
faults in an RCS. This is because the basic unit of an RCS is an en-
tire RRAM column rather than a single RRAM cell, and redundant
columns may also contain, as well as, give rise to hard faults.

In this paper, we present a complete design flow that includes
both on-line fault detection and fault-tolerant training for RCS. The
main contributions of this paper are as follows:

1. We propose a fault-tolerant training flow with on-line fault
detection for an RRAM-based neural computing system. In

this flow, the system can periodically detect the current dis-
tribution of faults and tolerate the faults in the next training
phase using the inherent fault-tolerant capability of the neu-
ral network.

2. We propose an efficient on-line fault detection method by
using quiescent-voltage comparisons. Modulo operations are
utilized to reduce the hardware overhead. The proposed me-
thod can detect faults with more than 70% accuracy and more
than 87% fault coverage within an acceptable test time.

3. We propose a threshold-training method and a re-mapping
scheme during the training phase to tolerate faults using the
sparsity of neural networks. Our results show that the accu-
racy can be restored to the original training accuracy for a
fault-free scenario.

2. PRELIMINARIES AND MOTIVATION

2.1 RRAM-based Neural Computing
An RRAM cell is a passive two-port element with variable re-

sistance, and multiple cells are used to construct a crossbar struc-
ture. Researchers have found that if we store a “matrix” on the
conductances of RRAM cells in the crossbar structure and input a
“vector” as input voltage signals, the RRAM crossbar is able to per-
form high-efficiency matrix-vector multiplication in analog mode.
Specifically, the relationship between the input and output voltages
can be expressed as: iout,k =

∑N
j=1 gk,j · vin,j , where ~vin is the

input voltage vector (denoted by j = 1, 2, ..., N),~iout is the output
current vector (denoted by k = 1, 2, ...,M), and gk,j is the conduc-
tance matrix of the RRAM cells representing the matrix data [10].
Based on this structure, several RCS designs have been proposed,
e.g., RRAM-based neural networks with fully-connected (FC) lay-
ers [10], and RRAM-based convolutional neural networks (CNN)
with both convolutional (Conv) layers and FC layers [11].

2.2 Related Prior Work
To tolerate soft faults, researchers have demonstrated on-line

training schemes for RRAM and other emerging non-volatile mem-
ory (NVM)-based neural networks. Strukov et al. implemented
a 9×3 single-layer RRAM-based network by on-line training [7].
This work shows the benefit of on-line training to solve the map-
ping variations. However, it cannot target hard faults and the en-
durance problem due to the small size of the array and the simplic-
ity of the application with only a few write operations.

For on-line fault-tolerant training on a larger network, we also
need to know the distribution of faults. Recent work on fault dis-
tribution in the RCS are mainly focused on off-line fault detection-
s [9, 12]. These designs can cover many RRAM fault types, and
provide high fault coverage. However, the high time complexity
limits their usefulness for on-line testing. Moreover, [12] does not
support fault localization, and [9] requires sequential March diag-
nosis to determine fault locations. In [13], a parallel test method
was proposed to reduce testing time, but this design is not scalable
for large crossbars.

2.3 Motivational Example
We simulate the training procedure of the VGG-11 network on

the Cifar-10 dataset [14] for both fault-free training and on-line
training with hard faults. The percentage of RRAM cells with
stack-as faults after fabrication is approximately 10% [5]. The en-
durance model is based on the published data that the endurances
of cells obey a Gaussian distribution [3], and we set the mean en-
durance of cells to be equal to 5 × 106 [6, 15, 16]. The results are

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
cc

u
ra

cy
 o

f
C

if
ar

1
0

 (
%

)

Number of Training Iterations (×106)

Case with 10% initial hard
faults & limited endurnace
Case with 30% initial hard
faults & limited endurnace
Ideal case (no faults)

Figure 1: Training accuracy versus different initial hard fault con-
ditions of RCS on the Cifar-10 dataset.

shown in Fig. 1. Training in the absence of faults can classify the
TestSet with 85.2% accuracy after 5 million iterations. However,
when SA1 and SA0 faults are injected during training according to
the above endurance model, the maximum accuracy can reach only
37%, and the accuracy further decreases if we continue with more
training iterations. Moreover, if we need to train the RCS for an-
other subsequent neural-computing application, which aggravates
the impact of faults (i.e., the percentage of RRAM cells with faults
may become 50%), we cannot achieve higher than 10% accuracy
after training. Therefore, a fault-tolerant on-line training solution
for RCS is required.

3. FAULT-TOLERANT TRAINING
The complete flow of the proposed fault-tolerant on-line train-

ing method is shown in Fig. 2. In priori work, a forward prop-
agation phase is processed to obtain the actual output from the
current neural network [7]. Then, the ideal output from the train-
ing dataset is compared with the actual output, and the difference
is back-propagated to update network weights. In the proposed
fault-tolerant training method, a threshold-training step (described
in Section 5.1) is proposed after the back-propagation phase to en-
hance the lifetime by eliminating write operations on RRAM cells.
Subsequently, after every fixed number of iterations, the proposed
on-line fault detection method (described in Section 4) is executed
to update fault-free/faulty status of RRAM cells. A pruning step
is carried out simultaneously to obtain the locations of zeros in the
weight matrices based on network pruning [8]. With the knowledge
from the two distributions, the proposed re-mapping technique (de-
scribed in Section 5.2) is applied to tolerate the faults by utilizing
the inherent sparsity of neural algorithms.

4. ON-LINE FAULT DETECTION

4.1 Detection of Faults by Quiescent-Voltage
Comparison

The flow of the proposed quiescent-voltage comparison method
is described in Fig. 3. A read operation is first carried out to ex-
tract the RRAM crossbar values after training and store them off-
chip. The SA0 and SA1 faults need separate detection procedures.
The SA0 fault detection procedure consists of four steps. The first
step is to write a fixed increment to all RRAM cells. We replace
the traditional “Write 1” operation with a “Write +δw” operation,
where +δw is the fixed increment. In this way, we can recover the
training weights of RRAM cells after testing. Second, test voltages
are applied to one group of rows. Utilizing the crossbar structure,
output voltages can be obtained at all column output ports concur-
rently. This parallel test method is therefore time-efficient. In the
third step, control logic and a multiplexer are utilized to select an
appropriate reference voltage. The reference voltages are set to be
equal to the sum of previous values stored off-chip and the written

Fabrication Off-line Detection

Forward
Propagation

Back Propagation

Actual Output

Idea Output

Need Detection?

Generate Pruning

Fault
Distribution

Pruning
Distribution

Re-mapping

Yes No

Chip

100% Precision, 100% recall

Changes of Weights

On-line Detection Threshold
Training

Figure 2: Proposed fault-tolerant training method with (1) a
threshold-training method to reduce the write workload, (2) an on-
line fault detection phase to detect fault locations, and (3) a re-
mapping phase to avoid or reuse faulty cells.

increments. The last step involves comparisons between the actual
outputs and the reference voltages. If a discrepancy exists, it de-
notes that at least one of the RRAM cell in the selected rows and
columns cannot be updated correctly when we write an increment.
This discrepancy indicates a SA0 fault. Because RRAM crossbars
can be used in two directions, we can also apply test voltages to
column input ports, and repeat the last three steps to derive the row
information from the row output ports. After SA0 fault detection, a
“Write −δw” operation is carried out for SA1 fault detection. The
reduction value is set equal to the increment value used for SA0 de-
tection to enable the RRAM to recover its original training weights.
The four-step test process for SA1 fault detection is similar to that
for SA0 fault detection.

An example is presented in Fig. 4(a) to illustrate the test proce-
dure. The crossbar here is a simplified schematic of a 10×10 RCS,
and a square with a cross represents an actual defective cell. The
test size is set to 5, which implies that the test voltages are applied
to five rows in every test cycle. Therefore, to finish the row test,
we need two test cycles. An additional two cycles for column test
are required. Shaded squares are determined as being fault-free.
In Fig. 4(a), the white squares denote the detected fault locations.
As shown in this figure, 100% fault coverage is obtained, but some
fault-free cells are determined to be faulty.

4.2 Reduction of Hardware Overhead with
Modulo Operations

To tolerate write variance, RRAM cells in the test phase of RC-
S can be considered as multi-level resistance cells. The increment
(reduction) written in testing phase is set to be larger than the vari-
ance. The number of resistance levels can be set to 8 [17].

Although the same voltage is applied to all the tested rows, the
correct outputs may still be in a large range for different conduc-
tance (gkj) combinations. To simplify the design of the reference
voltage, we use modulo operations to map all possible voltages to
a limited number of values. We choose 16 as the divisor for the
modulo operations based on a trade-off between fault coverage and
hardware overhead. In this way, only 16 reference voltages are
needed, and the control logic is also simplified. Faults can stil-
l be detected unless 16 or more faults occur simultaneously in the
tested area. As the divisor for the modulo operation increases, the
fault coverage increases, but the hardware overhead increases. In
order to apply modulo operations, we reuse the analog-to-digital
converters (ADCs) on the output ports, transforming the analog
output voltages to digital values. The mod (2n) operations can
be realized by truncating the last n bits of the dividend. A set of
NAND gates can then be used for digital comparisons. The loss in
information due to the modulo operations leads to a slight decrease

 SA0(SA1) Fault Detection

Read RRAM Values,
Store Off-Chip

Write +ᵟw(-ᵟw) To
All RRAM Cells

Calculate Reference
Voltages

Apply Test Voltages

Comparison

SA0 Fault Detection

SA1 Fault Detection

Distribution of Faults

Figure 3: Description of the quiescent-voltage comparison method.

(a) Detect faults among all cells

 X X

 X

 X

 X X X

 X

 X

 X

 Real

Prediction

Has Fault No Fault

Has Fault TP FP

No Fault FN TN

 X X

 X

 X

 X X X

 X

 X

 X

(b) Detect faults among selected cells
Figure 4: Illustration of the quiescent-voltage comparison test
method (test size = 5).
in fault coverage.

4.3 Improvement of Performance by Selected-
Cell Testing

To make the test method practical, we must ensure low test time,
high fault coverage, and low false positives for fault detection. Us-
ing the quiescent-voltage comparison method for only the selected
cells helps us to achieve this goal. Cells that need testing are select-
ed based on the knowledge that SA0 faults can occur only in cells
with high resistance, and SA1 faults can occur only in cells with
low resistance. The read operation at the beginning of the test phase
provides the necessary information about resistance values. The
test procedure involving selected cells is shown in Fig. 4(b). For
example, considering the detection of SA0 faults, the pink squares
denote the cells with high resistance. Since SA0 faults can occur
only in these pink cells, there is no need to test the other cells. In
this way, the test time may be reduced because no test is applied to
the first column. The number of false detections is also decreased
from 10 in Fig. 4(a) to 6 in Fig. 4(b).

5. ON-LINE TRAINING

5.1 Threshold Training
We first introduce the threshold-training method to reduce the

number of write operations in each training iteration. Specifically,
a training iteration contains two steps [8]: a forward-propagation
step to obtain classification results using the current network and a
back-propagation step to adjust the weights. For a specific weight
wn

i,j(t) in the ith row and jth column of layer n, where t is the
iteration count, the next weight wn

i,j(t+ 1) is determined by:

wn
i,j(t+ 1) = wn

i,j(t) + LR ∗ δwn
i,j(t) (1)

δwn
i,j(t) = xni (t) ∗ f ′(ynj (t)) ∗ δyni (t) (2)

where xni (t) is the input of wn
i,j from the previous layer in the

forward-propagation step, f ′(ynj (t)) is the derivative of the output
in the forward-propagation step, and δyni (t) is the difference prop-
agated from the next layer in the back-propagation step. LR is the
learning-rate parameter used to control the training speed, which is
first set to a large value and gradually decreased during training.

To reduce the occurrence of faults, we analyze the distribution of

Algorithm 1: Threshold-training Algorithm
Input: Current_{wn

i,j}, {WriteAmountni,j}, LearnRate,
−−−−−−→
Samples,

−−−−−−−−−→
IdealOutputs

Output: Next_{wn
i,j}

1
−−−−−−−−−−−→
ActualOutputs = ForwardPropagation({Current_wn

i,j},−−−−−−→
Samples);

2 ~δyN =
−−−−−−−−−→
IdealOutput-

−−−−−−−−−−→
ActualOutput;

3 Calculate {δwn
i,j} according to Equ.(2) layer by layer;

4 for n = 1 : N do
5 for i, j do
6 if {δwn

i,j} < CalculateThreshold(WriteAmountni,j) then
7 {δwn

i,j} = 0; Next_wn
i,j = Current_wn

i,j ;
8 end
9 else

10 WriteAmountni,j = WriteAmountni,j +1;
Next_wn

i,j = Current_wn
i,j + LearnRate * {δwn

i,j}
11 end
12 end
13 end
14 return Next_{wn

i,j}

δw among all the weights in one iteration. For approximately 90%
of the weights, δw is less than 0.01δwmax, where δwmax denotes the
maximum δw in this iteration. When we consider the endurance
problem, a small value of δw contributes only slightly to network
training but reduces the lifetime of the RRAM cell.

Based on this observation, we only write to an RRAM cell with
a large δw. The proposed threshold-training method is shown in
Algorithm 1. Line 1 is the forward-propagation step processed on
RRAM arrays, while lines 2-3 indicate the back-propagation step
used to obtain δw. For lines 4-13, if δw is less than the training
threshold, it will be reduced to zero. Therefore, the corresponding
RRAM cell can avoid the write operation. The threshold is set to
0.01 of the maximum value of δw, which improves the average
lifetime of each RRAM cell by approximately 15X.

From a software perspective, threshold training will enlarge the
number of training iterations. We test the method on (1) a 784 ×
100× 10 NN on MNIST dataset [18] and (2) the VGG-11 network
on Cifar-10 dataset. Compared to the original training method, the
number of training iterations is enlarged by 1.2X.

5.2 Fault-Tolerant Re-mapping Method
Although threshold training can reduce the impact of write oper-

ations, new hard faults induced by limited endurance will inevitably
occur during the training procedure, and impact the network perfor-
mance (i.e., the recognition accuracy).

At the software level, researchers have noted that the weights in
a neural network contain a large amount of redundant information.
Therefore, pruning methods have been proposed to fix more than
50% of the weight values to zero during training [8]. This finding
motivates us to use the inherent sparsity of a neural network to tol-
erant the SA0 faults in an RRAM cell. This target can be achieved
by re-ordering the columns/rows of the weight matrix, and map the
zeros in the weight matrices to RRAM cells with SA0 faults.

The challenge in designing such an exchange method lies in the
inherent connection between matrices. As shown in Fig. 5, from a
software perspective, a neural network consists of multiple cascad-
ed layers. Therefore, the outputs of the RRAM crossbar are con-
nected to the inputs of another RRAM crossbar through peripheral
neuron modules [2]. Consequently, if we independently exchange
the rows or columns in each weight matrix with M neurons, an
M -to-M routing module is required to connect different RRAM
crossbars, which introduces high area and energy overhead. To ad-

W1,1

W2,1

Wm,1

SA

Mux

SA

Mux

SA

MuxFaulty RRAM Array

Fault-tolerant network

Neuron

Re-ordering

Pruning Network

Weight

Updating

Re-mapping

Figure 5: The proposed neuron re-ordering method for re-mapping.

dress this problem, we only consider the re-ordering of neurons in
this work. In other words, when the ith and jth columns of the
(n−1)th layer’s weight matrix are exchanged, the ith and jth rows
of the nth layer will also be exchanged in a corresponding manner.
From a software perspective, if we regard the neural network as a
weighted graph, the re-ordering of neurons with connected weights
will lead to an isomorphic network whose interconnection structure
is the same as that of the original network.

After the fault-detection step, there are two networks: 1) an N -
layer pruned network P provided by the pre-trained result from
software training; 2) an N -layer fault distribution network F , ob-
tained after each fault detection phase described in Section 4. Spe-
cifically, P = {P (1), P (2), ..., P (N)}, where P (n) = {p(n)

i,j } is
a 2-dimensional weight-pruning matrix for the nth layer. If the
weight in a neural network can be pruned, the corresponding value
of p(n)

i,j is set to 0; otherwise, the value of p(n)
i,j is set as ∞. F =

{F (1), F (2), ..., F (N)}, where F (n) = {f (n)
i,j } is a 2-dimensional

fault-distribution matrix for the nth layer. If an SA0 fault occurs on
RRAM cell, the corresponding value of f (n)

i,j is set to 0; if an SA1

fault occurs, the corresponding value of f (n)
i,j is set to 1; otherwise,

the value of f (n)
i,j is set as∞.

To describe whether an SA0 fault in F is tolerated (reused) by
the inherent zeros in the weight matrices, an ErrorSet E = {e}
is defined as the set of address groups, where e = {i, j, n} is the
address of a weight that satisfies: e ∈ E iff (p(n)

i,j 6= 0 & f
(n)
i,j 6=

∞). The optimization target is to minimize the number of elements
of E . Therefore, the distance between P and F can be defined as
the number of elements of E , i.e., Dist(P,F) = |E|.

We can similarly define E(n) as the error set corresponding to
layer n. The distance Dist(P,F) between P and F is the sum of
distances between P (n) and F (n), i.e.,

Dist(P,F) =
N∑

n=1

dist(P (n), F (n)) =

N∑
n=1

|E(n)| (3)

Based on these definitions, the optimization target of our neuron
re-ordering algorithm can be described as follows. Given F and P
with (‖F‖ = ‖P‖), O is the set of the networks that P can be
re-ordered into; the optimization result is to find Popt ∈ O that has
the minimum distance from F , i.e.,

Popt = argmin
X∈O

{Dist(X ,F)} (4)

The neuron re-ordering problem can be mapped to a set of K-
napsack problems, hence it is NP-hard. We use a genetic algorithm
to iteratively optimize the order of neurons layer by layer. For each
layer, we randomly exchange two neurons and evaluate the change
in the cost function Dist(P,F).

6. SIMULATION RESULTS

6.1 Evaluation Metrics for Fault Detection
We use the statistical metric of precision to evaluate false posi-

tives, where a false positive occurs when a fault-free cell is deter-
mined to be faulty. We also use the statistical metric of recall to
evaluate test escapes. Higher the recall, lower is the test escape.
Loss of precision results in unnecessary hardware overhead. Test
escapes reduce the accuracy of neural computation. Let TP refer
to the number of faulty cells that are correctly identified as being
faulty. Let FP be the number of fault-free cells that are erroneous-
ly identified as being faulty. In addition, let FN be the number of
faulty cells that are incorrectly identified as being fault-free. Then
Precision = TP/(TP +FP), andRecall = TP/(TP +FN).

In addition to precision and recall, test time and test size are also
important metrics. We define Tr (Tc) as the number of selected
rows (columns) in each test cycle and Cr (Cc) as the number of
rows (columns) in the crossbar. The test time, denoted by T and
measured in cycles, is computed as: T = dCr/Tre + dCc/Tce.
We define Er (Ec) as the number of rows (columns) that contain
RRAM cells with the high (low) resistance; these cells are likely to
be faulty cells. Since we need to perform test only in these selected
rows and columns, the test time is reduced to: T = dEr/Tre +
dEc/Tce. In our simulations, without loss of generality, the number
of rows and columns in the crossbar are assumed to be equal. We
also set Tr = Tc since the fault distributions are independent of the
row or column directions.

6.2 Experimental Setup

6.2.1 Fault Model
Since there is no consensus yet on the spatial fault distribution in

an RRAM crossbar, we evaluate our approach using several widely-
used fault distributions [5] [19]. These include the uniform distri-
bution and Gaussian distribution with several fault centers. The
fabrication defects cause 10% of the RRAM cells to have stuck-
at faults [5]. Two endurance models for RRAM cell are used to
target both low-endurance RRAM cell and high-endurance RRAM
cell. The mean endurance of low-endurance RRAM cell is set at
5× 106 write operations and the distribution of endurance obeys a
Gaussian distribution [3] with a variance of 1.5×106. For the high-
endurance model, we assume that the distribution of endurance fol-
lows a Gaussian distribution with a mean of 108 and a variance of
3× 107.

6.2.2 Benchmarks
We evaluate the proposed method on a modified VGG-11 deep

neural network for the Cifar-10 dataset [14]. The VGG-11 network
is modified to match the input size of Cifar-10 dataset, which con-
tains 8 Conv layers and 3 FC layers. The total weight amount is
7.66M and the complexity is 137M operations. The recognition
accuracy is 85.2% on TestSet, which is set as the ideal case for
training without faults.

The RRAM crossbar sizes used in the fault detection experi-
ments range from 128×128 to 1024×1024. This range is motivat-
ed by the current state of fabrication technology and the pro-spects
for future development.

6.3 Effectiveness of Fault Detection
There are interesting trade-offs between test time, precision, and

recall for the on-line test method. With a quiescent-voltage compar-
ison using modulo operations and 10% of the cells being defective,
the detection results are shown in Fig. 6(a) and Fig. 6(b) using the
uniform and Gaussian fault distributions, respectively. The fault

0 200 400 600 800 1000 1200
0.7

0.8

0.9

1.0

R
e
ca

ll Crossbar Size = 128*128

Crossbar Size = 256*256

Crossbar Size = 512*512

Crossbar Size = 1024*1024

0 200 400 600 800 1000 1200

Test time (cycles)

0.2

0.4

0.6

0.8

P
re

ci
si

o
n

(a) Uniform distribution cases

0 200 400 600 800 1000 1200
0.7

0.8

0.9

1.0

R
e
ca

ll Crossbar Size = 128*128

Crossbar Size = 256*256

Crossbar Size = 512*512

Crossbar Size = 1024*1024

0 200 400 600 800 1000 1200

Test time (cycles)

0.2

0.4

0.6

0.8

P
re

ci
si

o
n

(b) Gaussian distribution cases
Figure 6: Trade-offs between test time, precision, and recall.

detection recall values increase slowly as the test time increases.
Since the recall is always larger than 87%, it is always acceptable
for the subsequent neural computation steps. On the other hand,
for a given precision, the test time grows linearly with crossbar
size. Therefore, large RRAM crossbars need longer test time to
achieve satisfactory performance. However, even for a crossbar
with 1024 × 1024 cells, a 74% precision and 91% recall can be
obtained within 70 test cycles; thus, the test time is still acceptable
for on-line test.

In order to demonstrate the advantage of testing only among se-
lected cells, we compare the performance of testing among all the
cells with the performance gain obtained by testing a subset of cells
in proximate test time. Consider a Gaussian distribution of faults,
and assume that 10% of the cells are faulty and 30% of the cells
are in a high-resistance state. Our results show that, with this im-
provement, the precision increases significantly from around 50%
to 77%, while the recall of both methods is maintained above 90%.

6.4 Results of Entire Fault-tolerant Training
For RRAM-based CNN, some researchers implement both Conv

layers and FC layers on RCS [20], while other researchers only im-
plement FC layers on RCS [10]. Software level results have shown
that the fault tolerance capability and sparsity of the Conv layer are
much lower than that of the FC layer [8]. Therefore, we evaluate
the proposed methods in two cases. (1) An entire-CNN case: all
the layers of the VGG-11 network are mapped onto an RCS. (2) A
FC-only case: only the FC layers are mapped onto an RCS.

We evaluate the original training method using multiple endu-
rance models and initial fault ratios in both cases. Our simulation
results show that Conv layers are sensitive to hard faults, and thus,
the accuracy of CNN is approximately 10%, if more than 20% of
the RRAM cells have hard faults. However, for the FC-only case,
the accuracy decreases only when the percentage of faulty cells is
larger than 50%.

Fig. 7(a) presents the training accuracy for the entire-CNN case.
The mean endurance value of RRAM cells is set to 5× 106. With-
out fault-tolerant training, the accuracy can drop to only 10%, and

0 0.0877 0.1002 0.1112 0.1112 0.0947 0
0.05 0.5554 0.1093 0.4951 0.4951 0.1 0.25
0.1 0.4008 0.1066 0.5054 0.5054 0.1 0.5

0.15 0.2976 0.108 0.3944 0.3944 0.1 0.75
0.2 0.2677 0.1007 0.2456 0.2456 0.1 1

0.25 0.2409 0.1017 0.2151 0.2151 0.1 1.25
0.3 0.2048 0.0993 0.2139 0.2139 0.1 1.5

0.35 0.2483 0.1025 0.1892 0.2219 0.1 1.75
0.4 0.2111 0.1025 0.1668 0.2037 0.1 2

0.45 0.2219 0.1035 0.1649 0.2294 0.1 2.25
0.5 0.2037 0.1148 0.1573 0.1744 0.1 2.5

0.55 0.2294 0.1135 0.1833 0.1988 0.1 2.75
0.6 0.2251 0.1045 0.1989 0.2334 0.1 3

0.65 0.1988 0.1961 0.1657 0.2055 0.1 3.25
0.7 0.2334 0.1104 0.1809 0.178 0.1 3.5

0.75 0.2055 0.1002 0.1566 0.1902 0.1 3.75
0.8 0.178 0.129 0.1706 0.2422 0.1 4

0.85 0.2102 0.2478 0.2468 0.2468 0.1 4.25
0.9 0.2422 0.1712 0.2776 0.2776 0.1 4.5

0.95 0.2842 0.2811 0.3663 0.3663 0.1 4.75
1 0.3315 0.3001 0.3437 0.3437 0.1 5

1.05 0.5755 0.321 0.6299 0.6299 0.1
1.1 0.7015 0.318 0.7342 0.7883 0.1

1.15 0.7785 0.2347 0.7883 0.8105 0.1
1.2 0.8089 0.2894 0.8105 0.8204 0.1

1.25 0.8238 0.3726 0.8204 0.8241 0.1
1.3 0.8328 0.4398 0.8241 0.8268 0.1

1.35 0.8379 0.3552 0.8268 0.8284 0.1
1.4 0.8399 0.2679 0.8284 0.8294 0.1

1.45 0.8415 0.3137 0.8294 0.8307 0.1
1.5 0.8429 0.2593 0.8307 0.8314 0.1

1.55 0.8428 0.3179 0.8314 0.8312 0.1
1.6 0.8445 0.1901 0.8312 0.8302 0.1

1.65 0.8457 0.2445 0.8302 0.829 0.1
1.7 0.8445 0.1661 0.829 0.8285 0.1

1.75 0.8447 0.227 0.8285 0.8268 0.1
1.8 0.8459 0.1289 0.8268 0.8287 0.1

1.85 0.8459 0.286 0.8287 0.828 0.1
1.9 0.8457 0.3258 0.828 0.8303 0.1

1.95 0.8459 0.2787 0.8303 0.8274 0.1
2 0.8473 0.2325 0.8274 0.8322 0.1

2.05 0.8503 0.2407 0.83 0.8263 0.1
2.1 0.852 0.2304 0.8322 0.8306 0.1

2.15 0.8522 0.2752 0.8336 0.8295 0.1
2.2 0.8522 0.296 0.8322 0.8268 0.1

2.25 0.8522 0.2967 0.8263 0.8255 0.1
2.3 0.8523 0.1957 0.8306 0.8288 0.1

2.35 0.8523 0.3301 0.8295 0.8279 0.1
2.4 0.8523 0.2764 0.8268 0.828 0.1

2.45 0.8522 0.1126 0.8255 0.8255 0.1
2.5 0.8526 0.1679 0.8288 0.8288 0.1

2.55 0.8525 0.227 0.8279 0.8279 0.1
2.6 0.8529 0.104 0.828 0.828 0.1

2.65 0.8528 0.1499 0.8264 0.8264 0.1
2.7 0.8528 0.1235 0.8164 0.8164 0.1

2.75 0.8526 0.1577 0.822 0.822 0.1
2.8 0.8528 0.123 0.6625 0.6625 0.1

2.85 0.8533 0.1307 0.7649 0.7649 0.1

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
cc

u
ra

cy
 o

f
C

if
ar

1
0

 (
%

)

Number of Training Iterations (×106)
Ideal Case (No Faults)

Original Method

Entire Fault-tolerant Method

Fault-tolerant Method with Threshold Training

0
10
20
30
40
50
60
70
80
90

A
cc

u
ra

cy
 o

f
C

if
ar

1
0

 (
%

)

Training Iteration Amount (×

Fault-tolerant Method with Threshold Training

Entire Fault-tolerant Method

(a) Entire-CNN case

0 0.0877 0.1032 0.0883 0.1071 0.0967 0
0.05 0.5554 0.1052 0.1012 0.0999 0.1042 0.25
0.1 0.4008 0.1 0.0988 0.1003 0.1018 0.5

0.15 0.2976 0.1 0.1 0.1 0.1005 0.75
0.2 0.2677 0.1 0.1 0.1 0.1 1

0.25 0.2409 0.1 0.1 0.1 0.1 1.25
0.3 0.2048 0.1 0.1 0.1 0.1 1.5

0.35 0.2483 0.1 0.1 0.1 0.1 1.75
0.4 0.2111 0.1 0.1 0.1 0.1 2

0.45 0.2219 0.1 0.1 0.1 0.1 2.25
0.5 0.2037 0.1 0.1 0.1 0.1 2.5

0.55 0.2294 0.1 0.1 0.1 0.1 2.75
0.6 0.2251 0.1 0.1 0.1 0.1 3

0.65 0.1988 0.1 0.1 0.1 0.1 3.25
0.7 0.2334 0.1 0.1 0.1 0.1 3.5

0.75 0.2055 0.1 0.1 0.1 0.1 3.75
0.8 0.178 0.1 0.1 0.1 0.1 4

0.85 0.2102 0.1 0.1 0.1 0.1002 4.25
0.9 0.2422 0.1045 0.1 0.1 0.1 4.5

0.95 0.2842 0.1 0.1 0.1002 0.1 4.75
1 0.3315 0.1 0.1 0.1226 0.1 5

1.05 0.5755 0.1115 0.1 0.1125 0.1
1.1 0.7015 0.1489 0.1 0.183 0.1686

1.15 0.7785 0.1729 0.1 0.1909 0.1002
1.2 0.8089 0.1737 0.1 0.1976 0.1004

1.25 0.8238 0.1738 0.1002 0.2113 0.1001
1.3 0.8328 0.1763 0.1038 0.2326 0.1017

1.35 0.8379 0.1891 0.1234 0.2977 0.125
1.4 0.8399 0.2293 0.14 0.3594 0.1682

1.45 0.8415 0.224 0.2255 0.4625 0.2168
1.5 0.8429 0.2841 0.2855 0.5089 0.2768

1.55 0.8428 0.296 0.3369 0.5314 0.3036
1.6 0.8445 0.3403 0.4245 0.5665 0.3556

1.65 0.8457 0.3975 0.4328 0.5788 0.4781
1.7 0.8445 0.3876 0.4754 0.6623 0.4383

1.75 0.8447 0.4153 0.5366 0.6648 0.4654
1.8 0.8459 0.4284 0.5729 0.664 0.5821

1.85 0.8459 0.4954 0.6068 0.695 0.5621
1.9 0.8457 0.4337 0.5696 0.6528 0.5302

1.95 0.8459 0.5097 0.6258 0.6602 0.5752
2 0.8473 0.4824 0.6466 0.6979 0.5637

2.05 0.8503 0.5324 0.7143 0.7054 0.4002
2.1 0.852 0.5687 0.7332 0.7298 0.52

2.15 0.8522 0.6062 0.7479 0.744 0.6276
2.2 0.8522 0.6016 0.7547 0.7464 0.6434

2.25 0.8522 0.608 0.7555 0.7422 0.6661
2.3 0.8523 0.616 0.757 0.7451 0.6852

2.35 0.8523 0.6219 0.7611 0.7521 0.6843
2.4 0.8523 0.6239 0.7595 0.7509 0.6919

2.45 0.8522 0.6325 0.7601 0.7444 0.7021
2.5 0.8526 0.6337 0.7626 0.2981 0.7001

2.55 0.8525 0.628 0.7634 0.5669 0.6443
2.6 0.8529 0.6334 0.7644 0.6884 0.6712

2.65 0.8528 0.6248 0.7602 0.7338 0.7001
2.7 0.8528 0.6292 0.7633 0.7343 0.7097

2.75 0.8526 0.6384 0.7625 0.718 0.6944
2.8 0.8528 0.6294 0.7606 0.7321 0.7057

2.85 0.8533 0.6314 0.7632 0.7146 0.7056

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
cc

u
ra

cy
 o

f
C

if
ar

1
0

 (
%

)

Number of Training Iterations (×106)

Ideal Case (No Faults)

0102030405060708090

00.511.522.533.544.55

A
cc

u
ra

cy
 o

f
C

if
ar

1
0

 (
%

)

Training Iteration Amount (×106)

Ideal Case (No Faults)

Original Method

0
10
20
30
40
50
60
70
80
90

00.511.522.533.544.55

A
cc

u
ra

cy
 o

f
C

if
ar

1
0

 (
%

)

Training Iteration Amount (×106)

Fault-tolerant Method with Threshold Training

Entire Fault-tolerant Method

(b) FC-only case
Figure 7: Training accuracy of fault-tolerant on-line training
method with different endurance models on the Cifar-10 dataset.

the largest accuracy obtained during training is also lower than 40%
(the orange line). The threshold-training method (the grey line) can
increase the peak training accuracy to 83% on the Cifar-10 dataset,
which is comparable to the fault-free software-based training re-
sults (the blue line). However, since the fault tolerance and sparsity
of Conv layer is low, the proposed fault-detection and re-mapping
steps cannot further improve the accuracy (the yellow line).

We further evaluate the effect of threshold-training method on
the percentage of faulty cells for different endurance models. When
a high-endurance model with mean value 108 is used, the origi-
nal method can train the RCS for approximately 10 times. Since
the average number of write operations in the threshold-training
method can be reduced to only 6% of that of the baseline method,
the threshold-training method can train the RCS for more than 150
times. For the endurance model with a lower mean value like 107,
the percentage of faulty cells after the first training phase is approx-
imately 14% using the original method; while in the second training
phase, the training phase does not converge. The threshold-training
method can successfully train the network with 14% of the cells
being faulty; therefore, the RCS can be trained for approximately
27 times.

For the FC-only case, we focus on the scenario in which the
RCS has been trained multiple times and contains a large number
of initial faults before the subsequent training. We set the mean
endurance value to 108, but reduce the remaining endurance of R-
RAM cells to mimic the case in which the RCS has already been
trained multiple times. Fig. 7(b) shows the results for the case in
which the percentage of RRAM cells with hard faults before train-
ing is approximately 50%. With such a large number of initial hard
faults, the peak accuracy of traditional on-line training method (the
orange line) is only 63%. The threshold-training method (the grey
line) has negligible impact in this case because it can only reduce
the occurrence rate of new faults but cannot tolerate the existing
faults. The proposed fault-detection and re-mapping steps (the yel-
low line) can identify the hard faults of RRAM cells and tolerate
them in the RCS utilizing the sparsity of neural-computing algo-
rithms. Based on the proposed fault-tolerant on-line training flow,
the accuracy can be increased back to 76%.

7. CONCLUSIONS
We have presented a fault-tolerant training method for an RRAM-

based neural computing system to reduce the impact of hard faults
in RRAM cells. An on-line fault-detection phase has been pro-
posed to obtain the distribution of faulty cells during training by us-
ing a quiescent-voltage comparison method. In the training phase,
threshold training and heuristic re-mapping based on neuron re-
ordering are proposed to tolerate faults using the inherit sparsity of
neural networks. Simulation results show that the accuracy in the
presence of faults can be restored to the original training accuracy
for a fault-free scenario.

8. ACKNOWLEDGEMENTS
This work was supported by 973 project 2013CB329000, and

National Natural Science Foundation of China (No. 61373026,
61622403), Joint Fund of Equipment Pre Research and Ministry
of Education, and Huawei.

9. REFERENCES
[1] M. M. Waldrop, “The chips are down for Moore’s law,” Nature News,

vol. 530, no. 7589, p. 144, 2016.
[2] P. Chi et al., “Prime: A novel processing-in-memory architecture for

neural network computation in ReRAM-based main memory,” in
ISCA.

[3] R. Degraeve et al., “Causes and consequences of the stochastic
aspect of filamentary RRAM,” Microelectronic Engineering,
vol. 147, pp. 171–175, 2015.

[4] L. Xia et al., “Technological exploration of RRAM crossbar array for
matrix-vector multiplication,” Journal of Computer Science and
Technology, vol. 31, 2016.

[5] C.-Y. Chen et al., “RRAM defect modeling and failure analysis based
on march test and a novel squeeze-search scheme,” IEEE TC, vol. 64.

[6] K. Beckmann et al., “Nanoscale hafnium oxide RRAM devices
exhibit pulse dependent behavior and multi-level resistance
capability,” MRS Advances, pp. 1–6, 2016.

[7] M. Prezioso et al., “Training and operation of an integrated
neuromorphic network based on metal-oxide memristors,” Nature,
vol. 521, no. 7550, pp. 61–64, 2015.

[8] S. Han et al., “Deep compression: Compressing deep neural network
with pruning, trained quantization and Huffman coding,” CoRR,
abs/1510.00149, vol. 2, 2015.

[9] S. Kannan et al., “Modeling, detection, and diagnosis of faults in
multilevel memristor memories,” IEEE TCAD, vol. 34.

[10] L. Xia et al., “MNSIM: Simulation platform for memristor-based
neuromorphic computing system,” in DATE, pp. 469–474, 2016.

[11] T. Tang et al., “Binary convolutional neural network on rram,” in
ASP-DAC, pp. 782–787, IEEE, 2017.

[12] S. Kannan et al., “Sneak-path testing of memristor-based memories,”
in VLSID, pp. 386–391, IEEE, 2013.

[13] T. N. Kumar et al., “Operational fault detection and monitoring of a
memristor-based LUT,” in DATE, pp. 429–434, IEEE, 2015.

[14] A. Torralba et al., “80 million tiny images: A large data set for
nonparametric object and scene recognition,” IEEE TPAMI, vol. 30.

[15] C.-H. Cheng et al., “Novel ultra-low power RRAM with good
endurance and retention,” in VLSI Symp. Tech. Dig, pp. 85–86, 2010.

[16] Y.-S. Fan et al., “High endurance and multilevel operation in oxide
semiconductor-based resistive RAM using thin-film transistor as a
selector,” ECS Solid State Letters, vol. 4, no. 9, pp. Q41–Q43, 2015.

[17] C. Xu et al., “Understanding the trade-offs in multi-level cell
ReRAM memory design,” in DAC, pp. 1–6, IEEE, 2013.

[18] Y. LeCun et al., “The MNIST database of handwritten digits,” 1998.
[19] C. Stapper, “Simulation of spatial fault distributions for integrated

circuit yield estimations,” IEEE TCAD, vol. 8.
[20] L. Xia et al., “Switched by input: power efficient structure for

RRAM-based convolutional neural network,” in DAC, p. 125, ACM,
2016.

