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MR-TopoMap: Multi-Robot Exploration Based on
Topological Map in Communication Restricted

Environment
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Abstract—Multi-robot exploration in unknown environments
is a fundamental task for a multi-robot system, involving inter-
robot communication through messages among the robots. How-
ever, in a restricted communication environment, the limited
communication resources become the system’s bottleneck due
to a large amount of data in the occupancy grid map. Hence, to
enhance multi-agent exploration in communication-constrained
environments, this paper develops a method to build topolog-
ical maps while the robot moves in the environment and an
exploration strategy based on the created topological map. The
latter map comprises a set of vertices and edges connecting the
vertices, where each vertex represents a specific area embedded
with a descriptor extracted by visually observing this area and
recognizing it utilizing descriptors. Each robot has its local
grid map stored for path planning, not shared between them.
Considering the exploration task, a robot’s ability to choose a
proper direction depends on the other robot’s locations and the
unexplored areas. Our exploration framework is evaluated on
the Gazebo simulator and real robots, increasing the exploration
efficiency by 23%∼77%. Compared with the occupancy grid map
scheme, our method’s data transfer is reduced by 84%∼90%.

Index Terms—Multi-Robot SLAM, Multi-Robot Systems,
Mapping

I. INTRODUCTION

EXPLORATION tasks require the robot to move in an
unknown environment autonomously and build the cor-

responding map, which has always been a fundamental task
in an autonomous robot system. Employing multiple robots to
explore an area cooperatively improves exploration efficiency
due to enhanced perception, requiring each robot to know
the relative poses (RelPose) of the other robots. Such multi-
robot systems commonly rely on distributed Simultaneous
Localization and Mapping (DSLAM) schemes to calculate the
robot’s relative pose. A typical DSLAM system transfers: 1)
place descriptors for place recognition (PR), 2) sensor data
to calculate the relative poses, and 3) each robot’s submap
for map merging [1], [2]. However, a multi-robot system’s
bottleneck is communication. The intensity of WiFi signal
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Fig. 1: The proposed system’s overview. Among different
robots, only newly built vertices and edges are transferred.

varies greatly with distance[3], and communication cannot be
guaranteed. Under some extreme environments, for example,
underwater, the applicable method such as acoustic communi-
cation is hard to exceed 100 Kbps [4]. Meanwhile, the required
data transmission is 2 Mbps for occupancy grid maps [5], and
communication becomes the bottleneck of the system.

Recent exploration methods build the environment’s occu-
pancy grid map, which, regardless of the communication data
type, has the largest volume accounting for around 70% of all
traffic [6]. Since the map involves the most communication-
consuming module, previous works tried to optimize the map
sharing process in communication-constrained environments.
For example, the Gaussian Mixture Model (GMM) Map repre-
sents the environment by employing only some parameter sets
but imposes a substantial computational burden. Moreover, a
topological map comprises a set of vertices that represent a
certain area, and the involved edges connect the vertices to
indicate connectivity. Hence, creating a topological map [7]
is feasible in multi-robot exploration tasks and is appealing
under communication-restricted conditions due to the small
amount of data transferred. Nevertheless, limited information
prohibits robots from solely relying on topological maps to
avoid obstacles and decide where to move next.

Therefore, this paper proposes a new form of a topological
map and utilizes it to build a multi-robot exploration system.
Figure 1 presents a robot using a panoramic camera to build
the topological map (Section III-A). Every time the robot con-
siders it has moved to a new place based on visual observation,
it creates a vertex to represent the place. Guiding the robot
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towards the desired place involves creating a local occupancy
grid using LiDAR, which is not transferred among robots. The
robot also detects the unexplored directions of the vertex based
on the local grid map around the vertex and then stores them
into the vertex as the exploration guidance (Section III-B).
If the robot creates a new vertex or an edge, it sends it to
the other robots. Moreover, the robot receives the vertices and
edges from other robots to generate their topological maps
locally. If a vertex from another robot has a similar vertex
descriptor in its map, it merges the maps (Section III-C). Only
the newly built vertices and edges are transferred among all
robots, significantly reducing data transmission. Finally, while
exploring the environment, the robot updates the topological
map (Section III-E).

The main contributions of our work are:
• A multi-robot exploration framework based on a topo-

logical map, aiming to reduce the communication traffic
volume among robots by 84%∼90%.

• An exploration strategy based on the created topological
map increasing exploration efficiency by 35%∼47%.

• Verifying our method’s robustness on a real robot plat-
form.

The remainder of this paper is organized as follows. Sec-
tion II discusses the related work, while Section III introduces
the proposed topological map building process and exploration
strategy. Section IV presents the experimental results and,
finally, Section V concludes this work and discusses future
research directions.

II. RELATED WORK

A. DSLAM

A recent survey [8] lists the ten main challenges in a
multi-robot SLAM system, and recent works focus on solving
the uncertainty of relative poses, complexity, and closing
loops. Moreover, place recognition has been an important
part of closing loops, with a current trend being recognizing
the same place by exploiting place descriptors. Specifically,
existing methods utilize 3D LiDARs and point-cloud based
PR methods, such as SegMatch [1], [9]. Regarding image data,
NetVLAD [10] has been used to extract a descriptor [2], [11],
or Bag of Words [12] to extract a descriptor from image feature
points [13].

Map transmission is an important part of a multi-robot
exploration system, as it is essential to share the explored area
among all robots. Current exploration methods usually make
use of occupancy grid map [14]. However, the data volume of
the gird maps increases rapidly as task execution progresses,
increasing the communication load.

To the best of our knowledge, there is not much works
put on the communication problem as the major issue in a
multi-robot exploration system. A possible solution could be
the robot sending data for pose estimation only if the place
descriptor succeeded in sending information to only one robot
[2]. Alternatively, Tian et. al [13] proposes a fully distributed
SLAM system that transfers the data locally, saving 70%
communication compared to centralized systems. Yu et. al [6]
sent the submap to the system’s robots without transmitting the

descriptors for PR and the sensor data required to calculate
the relative pose. In this case, each robot performs PR and
calculates its relative pose based on the submap, reducing
the communication traffic. Though efforts have been made,
the occupancy grid map still has the problem of a huge
communication volume.

Other forms of maps can also be used to save commu-
nication bandwidth. The Gaussian Mixture Model (GMM)
map [15], [16] is employed to map the environment, saving
communication traffic. Nevertheless, GMM mapping requires
massive computational resources [17], which cannot be satis-
fied on mobile robots. Additionally, each robot usually samples
the models as points for path planning to perform further
computations, resulting in redundant calculations.

B. Topological Map

Topological maps have been used in the field of robots for a
long time, typically extracting such maps from satellite views
[18] to assist robot deployment [19]. For example, Hiller et.
al [20] extracted topological maps from occupancy grid maps
to enhance intuitive human-robot collaboration. It should be
noted that a topological map can also complete the exploration
task [21].

Xu et. al [22] proposed a hierarchical topological map
presentation to improve the performance of long-term path
planning and use the occupancy grid map for obstacle avoid-
ance. Ravankar et. al [23] created a hybrid map containing
the topological and grid maps for exploration in large areas.
Moreover, utilizing visual observation to determine whether
the robot enters a new place and builds a vertex has also
been explored [24]. In this method, the robot adopts a strategy
trained via reinforcement learning. However, current methods
do not support multi-robot exploration, and therefore these
techniques do not consider communication.

Bayer et. al [25] uses a topological map to meet the
low-bandwidth communication condition in multi-robot explo-
ration tasks. Every time one robot generates a new vertex, it
sends it to the other robots avoiding substantially increasing
the transmitted data amount while the map grows. However,
this method requires the robot’s relative poses to be a pri-
ori known and the robots have a common reference frame
established at the start, thus is unsuitable for the scenario
where robots explore an area from a different starting point.
In [26] the authors suggest detecting the corridors and corners
to generate the topological map by using a frontier-based
exploration algorithm. Nevertheless, the robots must have the
same initial position in this method, which might be unfeasible
depending on the scenario.

For exploration tasks, most of the existing works rely on the
grid-map-based method, such as Rapidly-exploring Random
Trees (RRT) family [27], [28], the Artificial Potential Field
(APF) family [29], [30]. Moreover, Multi-robot Multi-target
Potential Field (MMPF) method has been proposed in recent
years as an application of APF under multi-robot condition[6].
However, all of these methods do not apply to topological-
map-based exploration. Thus, new exploration strategy is
required.
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Fig. 2: Different views of the same place, as observed from
different directions.

TABLE I: The information one vertex contains

N robot name
id the id of the vertex in this robot

position the position of the vertex in the coordinate system
of current robot

desc descriptor of this vertex
L a list, contains the unexplored directions of this vertex

III. METHODOLOGY

This work proposes a multi-robot exploration system utiliz-
ing a topological map. The system’s overview is illustrated
in Figure 1. In this section, the details of the exploration
framework will be introduced.

A. Topological Map

The proposed system involves the robots sharing topological
maps of the explored area, aiming to complete the tasks coop-
eratively. Moreover, our system employs visual information to
decide whether the robot moves into a new place. However, if
the robot passes the same place from two different directions,
it is very likely to obtain a different observation (Figure 2)
failing to recognize the place. Therefore, we use panoramic
view, details are described in Section IV.

The topological map generation flow is illustrated in Fig-
ure 3. Our technique performs place recognition exploiting an
image retrieval algorithm [31] and the network remaps the
input image to a vector, acting as a descriptor. The larger the
descriptors’ inner product, the more likely the pictures are
taken from the same place. If the input image’s descriptor does
not match with the descriptors of any vertices in the map, then
a new vertex is built, and the descriptor of the current visual
observation is stored in the vertex. After that, the robot needs
to crop the surrounding area map (the part surrounded by a
black dashed frame in the grid map), detects the frontiers (the
points marked as red), find the unexplored directions in this
area.

One vertex contains the information presented in Table I,
while an edge contains only the information to identify the
vertices it is linked with, as shown in Table II.

The flow of the map building is shown in Algorithm 1,
function “CalFeatrue” extracts an image to a vector, function
“InnerProduct” calculates the inner product of two vectors.

Place
Descriptor No match

Unexplored 
directions

Compare

Panoramic 
camera

Feature
Extraction

New Vertex

Fig. 3: Topological map generation flow. The robot uses the
visual input to determine whether it moves to a new place. If
it does, then a new vertex is generated. Grid map is used to
detect unexplored directions.

TABLE II: The information one edge contains, vertex1 and
vertex2 denote the vertices that an edge linked with.

N1 robot name of vertex1
id1 the id of the vertex1
N2 robot name of vertex2
id2 the id of the vertex2

B. Occupancy Grid Map for Obstacle Avoidance

It is challenging to guide the robot to the desired place
by solely using the topological map because it ignores en-
vironmental details. This problem is solved by implementing
a single-robot SLAM scheme on each robot to generate the
occupancy grid map. In this work, we adopt Cartographer [32]
as the SLAM module to create in real-time an occupancy grid
map of the explored area. As illustrated in Figure 3, it is
also used to detect the unexplored directions. The exploration
strategy determines which direction to choose, and the robot
moves to the given direction avoiding the obstacles in the
grid map. The complete strategy is discussed in detail in the
following subsection. It should be noted that the grid map
is only used to detect the unexplored directions and guide
the robot in the environment, and it is not transferred during
the robots’ communication; therefore, the data transmission
volume does not increase.

C. Map Merging

The robots share the explored area by communicating
the topological map. However, if the robot sends the entire
map every time, the communication volume increases as the
exploration tasks move on. Nevertheless, each robot only needs
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Algorithm 1 Topological map building
Input: Panoramic view V, position in its own coordinate

system position, occupancy grid map of the robot M, threshold
of place recognition th

1: last vertex = NULL
2: while exploration does not end do
3: max score = 0, matched vertex = NULL
4: desc

′
= CalFeature(V)

5: for vertex vi in topological map do
6: score = InnerProduct(vi.desc, desc

′
)

7: if max score < score then
8: max score = score
9: matched vertex = vi

10: end if
11: end for
12: if max score < th then
13: Create new node v

′

14: v
′
.desc = desc

′
, v

′
.position = position

15: Cut the map m around current area in M
16: Detect the unexplored directions in m and add them

in v
′

17: Add v
′

to topological map and add a edge e′

between v
′

and last vertex
18: Send v

′
and e′ to other robots

19: last vertex = v
′

20: else
21: if matched vertex != last vertex then
22: Add an edge e

′
between matched vertex and

last vertex
23: Send e′ to other robots
24: last vertex = matched vertex
25: end if
26: end if
27: end while

to broadcast the newly created vertex or edge to the other
robots in our system.

In a typical multi-robot SLAM system, once the two robots
meet the same place, they calculate their relative pose by
transferring the sensor data. However, in our system, the sensor
data is not shared. If two vertices are considered matched using
the descriptors, it does not mean that their positions in the
environment are the same but the distance between them is
not long, i.e., it can be considered they are in the same place.

Let the current robot be robot1. Once the robot receives
the vertex or edge from another robot, i.e., robot2, it initially
compares the vertex’s descriptor with all the descriptors of its
map. If one of the robot’s vertices is matched with the received
vertex, robot1 put the vertex or edge into locally stored map
of robot2, and calculate the geometric transformation Tα

i of
two maps (line 10 of Algorithm 2). After merging the map
with robot2, once robot1 receives a vertex or an edge from
robot2 afterward, it adds it to the merged map.

Sometimes the mismatch error occurs, as shown in Figure 4,
vi of robot1 mismatches with vα of robot2, the geometric
transformation is Tα

i (line 10 in Algorithm 2), outputs a wrong
map shown in the upper-right. The robots are unaware of

Algorithm 2 Map merging
Input: Input: A vertex vα and an edge eα newly built by

another robot, threshold of place recognition th

1: M is the map of self, M
′

is the map of the other robot
2: max score = 0, matched vertex = NULL
3: for vertex vi in M do
4: score = InnerProduct(vi.desc, vα.desc)
5: if max score < score then
6: max score = score
7: matched vertex = vi
8: end if
9: end for

10: if max score > th & M has not merged with M
′

then
11: Tα

i = matched vertex.position - vα.position
12: Merge M and M

′
, the common vertices are vi and v

′

13: end if

the mismatch at first but could correct it later. Take robot1
as an example. If it moves to a place pj where robot2 has
explored, the visual view will match with a vertex (vγ) built
by robot2, and transformation T γ

j is put into the transformation
list. Similarly, other transformations will be added. When three
or more transformations are calculated, as in [6], the one which
is deviated from the mean value is detected, in our example, is
Tα
i as it comes from a mismatch. Then the robots realize the

maps were mistakenly merged previously and corrected them
with other matches.
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Fig. 4: The situation that mismatch occurs.

D. Exploration Strategy

The robot is required to select an unexplored direction to
head to. If the robot selects an unexplored direction, it sets a
goal that has a certain distance from the current position to the
chosen direction on its grid map and tries to reach the goal.
Thus, a strategy is required to choose the direction among the
candidates.

1) Before map merging: Before a robot meets other robots,
it adopts a greedy strategy by calculating the center of the
existing vertices every time a new vertex is added. Once a new
vertex is built and frontiers are detected, the center points of
each cluster are calculated (f1 ∼ f3 in Figure 5a). Then the
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Fig. 5: The robot only knows the center of itself before
map merging, while after merging it obtains the other robots’
centers.

robot calculates distances d1 ∼ d3 between the centers (c in
Figure 5a) and f1 ∼ f3, the direction which has the longest
distance is the next one to be explored. This method forces
the robot to move as far as possible from the explored area to
arrive at unexplored regions rapidly.

2) After map merging: After a robot merges its map with
the other robots’ maps, it considers the vertex position of
the other robots. Since a vertex contains the robot’s name,
the robot can identify which vertices belong to each robot,
acquiring each robot’s “center”. However, the “centers” are
not identical to the robots’ centers, as the common vertices
can not be calculated and can only present the area explored
by another robot. To clarify, let the current robot be robot1
with its vertex center c1 and the other robots’ centers be c2
and c3. Suppose the distance between c1 and f1 is d11 and
between c1 and f2 be d12. We wish the robot to explore an
area far from the already explored area, i.e., the robot must
move far away from the other robots, and thus we adopt a
weighted score sni to evaluate the unexplored direction i:

sni = w × dni +

N∑
j=0,j ̸=n

(1− w)

N − 1
× dji (1)

Where N is the total number of robots in the environment, and
w is the weight defining how close the robot moves from the
other robots’ centers, in our experiment, we adopt 0.5. Based

Unexplored direction

Explored area before choosing a goal

Explored area after choosing a goal

Vertex of robot1 Explored direction

Goal point

(a) Situation1: The robot chooses a new goal if it reaches the goal without
building a new vertex.

Vertex of robot1

Unexplored direction

Vertex of robot2

Explored area of robot1

Explored area of robot2

Explored direction

Matched

(b) Situation2: The robot chooses a new goal if it merges its map
with the other robots maps.

Fig. 6: The situation where the robot chooses a new direction
to move.

on the proposed method, the robot n chooses the direction
with the highest score sni. Thus, during the exploration, we
place the other robots as far away as possible, i.e., we dispatch
the robot to the direction far from the vertex centers of other
robots.

3) Renew the direction: On the robot’s way to fulfill the
goal, it may change the direction it moves based on new
information. If the robot builds a new vertex, it chooses a
new unexplored direction based on the new vertex. However,
sometimes the robot may reach its goal without building a new
vertex on its way (Figure 6a). In that case, it will choose a
new direction towards the next goal. If the robot finds a place
that another robot has explored, it merges its maps to theirs
(Figure 6b) and selects a new direction to move.

As the exploration moves on, the robot might go through
the already-explored area. However, due to the already built
vertices, it would not build a new one or merge the map
with other robots to change its goal and trapped in the
explored area. To avoid such a situation, if the robot detects
it continually moves into the area of three existing vertices in
current map, it will change the goal to another area to mitigate
duplicate exploration.

Under the situation mentioned above, the robot chooses the
nearest vertex and a new direction by utilizing the strategy
mentioned in Section III-D1 and Section III-D2.

E. Map Update

During exploration, the robot updates the topological map.
As depicted in Figure 7, suppose the vertex vi has three
unexplored areas stored in list Li. The robot chooses to explore
u1 and deletes u1 from Li. Next, the robot reaches the u2,
and if the robot is close enough to the u2’s center, the u2
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direction is set as an explored direction and is deleted from
Li. The exploration terminates if no vertex has an unexplored
direction.
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Unexplored direction

Explored direction

Explored area before creating 𝑣𝑖

Explored area after creating 𝑣𝑖

Fig. 7: If the robot moves to the position close to the
unexplored direction of a formerly built vertex, the moving
direction is set as “explored”.

IV. EXPERIMENT RESULT
A. Panoramic Camera, Simulation Environment and Real
Robot

1) Panoramic Camera: Our system’s place recognition
relies on visual observation. As mentioned in Section III-B, the
robot uses a panoramic camera to capture a 360◦ observation.
During the simulation, the robot uses four RGB cameras with
a 90◦ Field of View (FOV), placed in a squared configuration.
In the experiments involving real robots, we apply the similar
idea, each robot uses three cameras of 120◦ FOV.

2) Simulation Environment: We use the Gazebo [33] sim-
ulator to build two simulation environment as depicted in
Figure 8a and Figure 8b, where the small region is 391 m2

and the large one is 661 m2. The simulation robot is a burger
turtlebot, which besides cameras, it has a 360◦ laser scanner
(7m range).

3) Real Robot: We also implement our system on real
robots equipped with an RPLIDAR A1 LIDAR device and
three RGB cameras with 120◦ FOV creating a panoramic view.
The robot uses NVIDIA Jetson Xavier NX as computation
platform. Finally, each robot has a separate router to guarantee
stable communication conditions. The picture of our robot is
shown in Figure 8c.

B. Exploration Evaluation
1) Baseline and Criteria: To evaluate the efficiency of

our exploration method, we challenge it against RRT-based

(a) Small-sized envi-
ronment

(b) Large-sized envi-
ronment

cameras

Nvidia Jetson

Xavier NX

LiDAR

Router

(c) Real robot

Fig. 8: The test environment in Gazebo and real robot.

method[28], and an APF-based method called MMPF[6] in the
same environment, and test the exploration time and trajectory
length. The exploration time refers to the time from the robot’s
departure to the exploration completion, while the trajectory
length is the sum of all robots’ trajectories.

The baseline methods rely on the occupancy grid map stops,
as long as there is no frontier in the map. However, our
method exploits the unexplored directions and thus does not
ensure the robots cover the entire area. Hence, we also run an
occupancy grid map merging program during the test to test
the exploration completeness. Note that this program is just for
evaluation, as it is not a part of our exploration system. Once
we obtain a merged grid map while exploring the topological
map, it is compared with the maps generated by the RRT and
MMPF methods to demonstrate our method’s area coverage.

As illustrated in Table III, the grid-map-based methods
almost cover the whole environment. Our method covers most
of the area but not all of it. Since the our method does not
merge the grid maps, estimating the whole occupancy coverage
is hard. However, a cover rate higher than 90% could be
considered that the basic information of the environment is
known[14]. In order to compare with the baseline fairly, the
experiment tests the exploration time and the trajectory length
at the same coverage rate, 99% for the small environment and
95% for the large environment.

TABLE III: Area coverage using different exploration methods

2* Small Env Large Env
1 robot 2 robots 1 robot 2 robots

RRT 99.7% 99.8% 98.5% 99.2%
MMPF 99.8% 99.7% 99.1% 98.6%
TOPO 99.1% 99.5% 95.6% 95.2%

2) Result: For a single robot exploration scenario, as shown
in Figure 9a, our system explores the small environment
1.31× faster than RRT and 1.23× faster than MMPF, while
the trajectory lengths are almost same. Considering the large
environment, our system explores the area 1.16× faster and
travels 13.29% less than RRT and is 1.77× faster and travels
1.39% more than MMPF.

Considering the multi-robot test, in the small environment,
the robots employing the topological map explore the region
2.02× faster than RRT and save 16.67% of the trajectory
length, and 1.07× faster than MMPF using more 1.48% of
the trajectory. In the large environment, our system performs
1.54× faster exploration and travels 18.78% less than RRT
and is 1.34× faster than MMPF traveling 11.61% more. The
performance improves because the robot only selects a new
goal after building a new vertex, prohibiting the path from
changing frequently and thus affording the robot to move faster
to reach the goal without continuously adjusting its motion.
Additionally, our method has a longer trajectory length than
MMPF in the large environment because our policy imposes
robots to move as far as possible to find new areas quickly.
Thus some areas nearby the robot’s path may be temporarily
ignored and explored later. Once most of the environment
has been explored, the robot will travel within regions that
have already been explored. The methods based on the grid
map push the map’s frontier gradually, presenting shorter
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Fig. 9: Comparison of RRT, MMPF and Topological Method.

trajectories. Despite that, our method still has the shortest
exploration time.

C. Communication Evaluation

In this section, we evaluate the data volume transferred
among the robots. In typical DSLAM systems, the descriptors
for PR involve various information, including the keypoints
or raw sensor data, even when the same place is detected.
In recent methods the robot share the sensor data through
the submap [1] (ScanPerSubmap) or only send sensor data
after the keyframes are matched [2], [11] (ScanPerMatch).
Moreover, in SMMR [6] only the submap in PNG format is
shared that could be used for PR and relative pose estimation.
Nevertheless, in the proposed system, the robots only transfer
the newly built vertices and edges, substantially reducing the
transferred data volume. Each vertex contains the ID, place
recognition (PR), position, and unexplored directions (UD)
information types, with Table IV presenting the data transmis-
sion between two robots in both test environments. A standard
DSLAM scheme transfers descriptors and data to calculate
the relative poses and submaps, while SMMR transfers only

the submap. Unlike current trends, our system transfers the
vertices and edges of the topological map. Compared with the
grid map methods, our system saves the communication traffic
by 84%∼90%.

TABLE IV: Data transmission between two robots

2* 2*Method Data Transmission(KB)
PR RelPose Submap Total

5*Small ScanPerSubmap 56.3 79.2 357.5 493
ScanPerMatch 56.3 20.2 357.5 434
OnlySubmap 0 0 357.5 357.5

PR Position1&UD2 ID&Edge Total
TopologicalMap 64 7.5 3.3 77.3

PR RelPose Submap Total
5*Large ScanPerSubmap 163.5 250.2 990 1403.7

ScanPerMatch 163.5 155.4 990 1308.9
OnlySubmap 0 0 990 990

PR Position&UD ID&Edge Total
TopologicalMap 112 13.1 10.2 135.3

1 Geometric position of the vertex under the coordinate system of current robot.
2 Unexplored directions.

D. Threshold discussion

In our system, the topological map setup and merging
processes heavily rely on the threshold of the image retrieval
algorithm. The robot chooses a new viewpoint to move after
building a new vertex. As shown in Figure 10, the robot might
reach its original goal without building a new vertex if the
vertex is set too low. Thus a new goal will not be generated. As
illustrated in Fig 11, the exploration task fails if the threshold
is reduced to 0.65. If the threshold is set too high, though
two vertices in different maps could represent the same place
without being at the exact same position, these vertices are
not matched due to the high threshold. If the threshold is set
to 1, the map merging will fail. As shown in Figure 11, as the
threshold increases, the data transmission increases because
the vertices become dense, but the exploration time does not
decrease significantly. In our experiment, the threshold is 0.75.

Vertex of robot1

Explored direction

Goal point

Fig. 10: If the threshold is set two low, the robot might reach
the goal but build no vertex and have no idea where to move
next.

V. CONCLUSION & FUTURE WORK

This paper proposes an exploration method based on topo-
logical maps, reducing the communication load by 90% com-
pared with a typical DSLAM system and 86% compared with
a communication-optimized system. Moreover, for exploration
tasks, our system is more appealing against RRT and MMPF
saving 50% and 43% exploration time compared to RRT and
MMPF, respectively.

Our system heavily relies on the image retrieval algorithm
and the PR parameters. Hence, future work will investigate
other place recognition methods relying on visual observation.
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Fig. 11: Impact of threshold th mentioned in Algorithm 1 and
Algorithm 2 to exploration.

And edges will be used for graph matching to improve the
map merging algorithm. Moreover, our system will also be
expanded to an aerial-ground robotic system.
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[31] F. Radenović, G. Tolias, and O. Chum, “Fine-tuning cnn image retrieval
with no human annotation,” IEEE transactions on pattern analysis and
machine intelligence, vol. 41, no. 7, pp. 1655–1668, 2018.

[32] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2d lidar slam,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2016, pp. 1271–1278.

[33] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. IEEE, 2004, pp. 2149–2154.


