

消袭大学电子工程系

Department of Electronic Engineering, Tsinghua University

â

 مىشار لۇ

An Efficient Accelerator for Pointbased and Voxel-based Point Cloud Neural Networks

Xinhao Yang¹, Tianyu Fu¹, Guohao Dai², Shulin Zeng¹,

Kai Zhong¹, Ke Hong¹ and Yu Wang¹

¹Dept. of EE, BNRist, Tsinghua University, ²Shanghai Jiao Tong University

E-mail: yxh21@mails.tsinghua.edu.cn, daiguohao@sjtu.edu.cn, yu-wang@tsinghua.edu.cn

Contents

Background: Point Cloud NN

Point Cloud Neural Networks

Widely used in autonomous driving, robotics, AR/VR, etc.

Autonomous driving

AR/VR

Lidar **3D Point Cloud**

Object Detection Box

 Commonly used in object detection, tracking, classification, segmentation and other tasks

Object Detection

Object Tracking

mug?

Classification Semantic Segmentation

Background: Point Cloud NN

Point Cloud Neural Networks

o 3D algorithms have accuracy advantages over CNN and 2D algorithms

○ 3D point cloud data is sparse (0.01%~10%), the sparsity comes from the actual object

Method		Model	Car mAP (%)		
		Complex-YOLO [CVPR'18]	77.4	20	
2D	DEV	PixorNet [CVPR'18]	77.05	ZD	
	Range Image	LaserNet [CVPR'19]	73.77		
2.5D	voxel-based	Pointpillars [CVPR'19]	76.86		
		SECOND [Sensors'18]	78.62		
3D	voxel-based	CIASSD [AAAI'21]	79.86		
		Voxel R-CNN [AAAI'21]	84.52		
	neint beend	PointRCNN [CVPR'19]	78.63		
	point-based -	3D-SSD [CVPR'20]	79.57	3D	
		PVRCNN [CVPR'20]	83.61		
	voxei-point -	SA-SSD [CVPR'20]	79.91		
		F-ConvNet [IROS'19]	76.39]	
	LIDAK-Image -	EPNet [CVPR'20]	79.28		

3D algorithms has better accuracy compared to 2D algorithms

Background: Point Cloud NN

Point Cloud Neural Networks

- o 3D algorithms have accuracy advantages over CNN and 2D algorithms
- 3D point cloud data is sparse (0.01%~10%), the sparsity comes from the actual object

Method		Model	Car mAP (%)			Indoor 3D	Outdoor 3	
		Complex-YOLO [CVPR'18]	77.4					
2D	DEV -	PixorNet [CVPR'18]	77.05			1 % ~ 10 %	0.01%	
-	Range Image	LaserNet [CVPR'19]	73.77			_ 100%		
2.5D	voxel-based	Pointpillars [CVPR'19]	76.86					
3D	voxel-based	SECOND [Sensors'18]	78.62		Z 1%			
		CIASSD [AAAI'21]	79.86					
		Voxel R-CNN [AAAI'21]	84.52					
	point-based —	PointRCNN [CVPR'19]	78.63		O 0.01%			
		3D-SSD [CVPR'20]	79.57	3D A 0.001%				
	voxel-point —	PVRCNN [CVPR'20]	83.61		C	DIS Ret etho		
		SA-SSD [CVPR'20]	79.91		S	chape della	r dict	
	LiDAR-Image —	F-ConvNet [IROS'19]	76.39			5 MOS	centa.	
		EPNet [CVPR'20]	79.28				9 ⁻	

3D algorithms has better accuracy compared to 2D algorithms

sparsity comes from the actual object

Background: Memory Access

Point cloud neural networks are sparse computing
 Inconsistent ratio of computation to time
 Additional memory accesses

Related Works

- Point Cloud NN Acceleration
 - FPGA: Single operator acceleration
 - o GPU: Operator library
 - ASIC: High performance
 - PointAcc: SOTA, Baseline

SpConv [Sensors'18], MinkowskiEngine [CVPR'19], TorchSparse [MLSys'22], PCEngine [MLSys'23]

Sparse convolutional acceleration library

GPU

Related Works

Point Cloud NN Acceleration

- o FPGA: Single operator accelerationo GPU: Operator library
- ASIC: High performance
 PointAcc: SOTA, Baseline

SpConv [Sensors'18], MinkowskiEngine [CVPR'19], TorchSparse [MLSys'22], PCEngine [MLSys'23]

Sparse convolutional acceleration library

GPU

• Sparse mapping operation:

Redundant repetitive off-chip accesses to features (6.5~26.3x)

• Sparse mapping operation:

Redundant repetitive off-chip accesses to features (6.5~26.3x)

Access to all nonzero voxels when calculating each weight offset

Redundant repetitive off-chip accesses to features (6.5~26.3x)

Access to all nonzero voxels when calculating each weight offset

Redundant memory accesses

• Computing unit:

- Increasing computing capacity of autonomous driving chips
- Significant deterioration in computing unit utilization
 - \circ GPU: **45.7%**@30TOPS → **27.7%**@275TOPS
 - ASIC: $40.2\%@8TOPS \rightarrow 16.4\%@32TOPS$

Computing unit:

- Increasing computing capacity of autonomous driving chips
- Significant deterioration in computing unit utilization
 - \circ GPU: **45.7%**@30TOPS → **27.7%**@275TOPS

○ ASIC: $40.2\%@8TOPS \rightarrow 16.4\%@32TOPS$

NVIDIA Roadmap: Thor chip with 2000 TOPS to be launched in 2024

• Computing unit:

- Increasing computing capacity of autonomous driving chips
- Significant deterioration in computing unit utilization
 - GPU: 45.7%@30TOPS $\rightarrow 27.7\%$ @275TOPS
 - \circ ASIC: **40.2%**@8TOPS → **16.4%**@32TOPS

NVIDIA Roadmap: Thor chip with 2000 TOPS to be launched in 2024

• Computing unit:

Increasing computing capacity of autonomous driving chips

2000TOPS

Thor (2024)

---Compute Util

PS)

0L)

Peak Performance

2500

2000

1500

1000

500

0

- Significant deterioration in computing unit utilization
 - GPU: 45.7%@30TOPS → 27.7%@275TOPS
 - ASIC: 40.2%@8TOPS → 16.4%@32TOPS

NVIDIA Roadmap: Thor chip with 2000 TOPS to be launched in 2024

ASIC accelerator PointAcc [MICRO'21]

Computing Unit Utilization

50%

45%

40%

35% 30%

25% 20%

15% 10%

5%

0%

30TOPS

Xavier (2020)

TOPS

275TOPS

Orin (2022)

NVIDIA autonomous driving GPU

• Computing unit:

- Increasing computing capacity of autonomous driving chips
- Significant deterioration in computing unit utilization
 - \circ GPU: **45.7%**@30TOPS → **27.7%**@275TOPS
 - \circ ASIC: **40.2%**@8TOPS → **16.4%**@32TOPS

NVIDIA Roadmap: Thor chip with 2000 TOPS to be launched in 2024

Design scalable hardware architecture with high utilization

Challenge: Summary

Challenge: Summary

Mapping: Large off-chip memory access

E.g., in PointNet++, each sampled point requires visiting ~983 points

Lidar

elodune

Input point cloud

Challenge: Summary

Input point cloud

Comparison with existing works

• The comparison of existing ASIC-based point cloud accelerators

Point-based Mapping Operation (FPS, Ball Query, kNN): Distance Filtering

• Preprocessing stage: Partition the points into grids

Point-based Mapping Operation (FPS, Ball Query, kNN): Distance Filtering

Preprocessing stage: Partition the points into grids

Point-based Mapping Operation (FPS, Ball Query, kNN): Distance Filtering

- Runtime stage: Exclude grids with distances outside the radius
- FPS: Maintain a table of minimum distances from all points to the sample centroid set

Iteration 0:

Point-based Mapping Operation (FPS, Ball Query, kNN): Distance Filtering

- Runtime stage: Exclude grids with distances outside the radius
- FPS: Maintain a table of minimum distances from all points to the sample centroid set

Iteration 0: Choose ()

Point-based Mapping Operation (FPS, Ball Query, kNN): Distance Filtering

- Runtime stage: Exclude grids with distances outside the radius
- FPS: Maintain a table of minimum distances from all points to the sample centroid set

Iteration 0: Choose (1), Initiate Table

Point-based Mapping Operation (FPS, Ball Query, kNN): Distance Filtering

- Runtime stage: Exclude grids with distances outside the radius
- FPS: Maintain a table of minimum distances from all points to the sample centroid set

Iteration 0: Choose (1), Initiate Table

Iteration 1:

Point-based Mapping Operation (FPS, Ball Query, kNN): Distance Filtering

- Runtime stage: Exclude grids with distances outside the radius
- FPS: Maintain a table of minimum distances from all points to the sample centroid set

Iteration 0: Choose (1), Initiate Table

Iteration 1: Choose (8)

Point-based Mapping Operation (FPS, Ball Query, kNN): Distance Filtering

- Runtime stage: Exclude grids with distances outside the radius
- FPS: Maintain a table of minimum distances from all points to the sample centroid set

Iteration 0: Choose (1), Initiate Table

Point-based Mapping Operation (FPS, Ball Query, kNN): Distance Filtering

- Runtime stage: Exclude grids with distances outside the radius
- FPS: Maintain a table of minimum distances from all points to the sample centroid set

Iteration 1: Choose (8), Update Table

Point-based Mapping Operation (FPS, Ball Query, kNN): Distance Filtering

- Runtime stage: Exclude grids with distances outside the radius
- FPS: Maintain a table of minimum distances from all points to the sample centroid set

Point-based Mapping Operation (FPS, Ball Query, kNN): Distance Filtering

- Runtime stage: Exclude grids with distances outside the radius
- FPS: Maintain a table of minimum distances from all points to the sample centroid set

Point-based Mapping Operation (FPS, Ball Query, kNN): Distance Filtering

- Runtime stage: Exclude grids with distances outside the radius
- FPS: Maintain a table of minimum distances from all points to the sample centroid set

Point	Min Dist
0	0
1	2.5
2	2.4
3	4.8
4	3.1
5	0.5
6	3.3
7	4.0
8	5.5
9	4.9

 $\Rightarrow d(point, centroid) \ge \max(min \ dist)$ Q $Radius = \max(min \ dist)$ No additional calculations required by

No additional calculations required !

Sufficient and unnecessary conditions

for **no** distance updating:

Point-based Mapping Operation (FPS, Ball Query, kNN): Distance Filtering

- Runtime stage: Exclude grids with distances outside the radius
- FPS: Maintain a table of minimum distances from all points to the sample centroid set

 Voxel-based Mapping Operation (Kernel mapping): Output-Major Mapping Existing implementation: calculate the mapping of one weight offset at a time Input Voxels **Output Voxels** Mapping P_0 P_0 Shift Input Q_0 Detect P₁ Q₀ (In, Out, Wgt) P_2 Intersection By (-1, -1) Stride=1 P_2 P_1 Q_2 Q_1 $P_3 | Q_1$ $(P_1, Q_0, W_{1,1})$ Q_2 P_3 Q_3 P₄ $(P_4, Q_3, W_{1,1})$ Q₃ P_4 Q_4 Q_4 W_{-1,-1} W_{-1,0} W_{-1,1} Mapping for **one** kernel W_{0,-1} W_{0,0} W_{0,1} offset at a time W_{1,-1} W_{1,0} W_{1,1}

Efficient Mapping Unit: Hardware

 Unified hardware architecture supporting distance filtering (point-based) and outputmajor mapping (voxel-based)

Contents

Elastic Computing Unit

Two-level sub-array structure supporting dynamic splitting

Tiling features based on on-chip buffer size

Elastic Computing Unit

- Two-level sub-array structure supporting dynamic splitting
- Tiling features based on on-chip buffer size

Elastic Computing Unit

- Two-level sub-array structure supporting dynamic splitting
- Tiling features based on on-chip buffer size

Elastic Computing Unit

Two-level sub-array structure supporting dynamic splitting

Weight stationary dataflow

Elastic Computing Unit

Two-level sub-array structure supporting dynamic splitting

Preparation: Load weights

Elastic Computing Unit

Two-level sub-array structure supporting dynamic splitting

Elastic Computing Unit

Two-level sub-array structure supporting dynamic splitting

Elastic Computing Unit

Two-level sub-array structure supporting dynamic splitting

Computation: Output feature

Contents

Evaluation Setup
 Baseline: PointAcc
 Performance: Simulator
 Power: TSMC 65nm
 Point Num: 1k~124k
 Voxel Num: 15k~94k
 Dataset Statistics

Application	Dataset	Model	Method	Notation
Classification	ModelNet40	PointNet++	Point	PN
Detection	KITTI	CenterPoint	Voxel	СР
Compostation	S3DIS	MinkowskiUNet	Voxel	MU(i)
Segmentation	SemanticKITTI	MinkowskiUNet	Voxel	MU(o)

Hardware Configs	PointAcc (8T)	MARS (8T)	PointAcc (32T)	MARS (32T)
Array Size	64x64	16x16	128x128	16x16
Array Num	1x1	4x4	1x1	8x8
SRAM (KB)	776	776	3107	3107
DRAM	HBM2	HBM2	HBM2	HBM2
Bandwidth	256GB/s	256GB/s	256GB/s	256GB/s
Peak Perf.	8TOPS	8TOPS	32TOPS	32TOPS

End-to-end acceleration

- Point-based network (aligned computing capacity): up to 1.76x
- Voxel-base network (aligned computing capacity): up to 3.97x
- Average computing unit utilization (32TOPS): $26.67\% \rightarrow 68.32\%$
- $_{\odot}$ Worst computing unit utilization (32TOPS): $16.37\% \rightarrow 57.01\%$

Preprocessing Overhead

• Preprocessing: Sorting input points / voxels

• Overhead: <2.43%</p>

Distance Filtering Grid Size: U-shaped curve

Ablation Study

o Utilization and hardware overhead increases with the number of arrays

- Ablation Study:
 - Point-based: Memory access optimization is more important
 - Voxel-based: Utilization improvement is more important

Energy Efficiency

- o To PointAcc: ~1.30x Under TSMC 65nm
- To GPU & CPU: Converted from PointAcc paper:
 - MARS(8T) to GPU: 25.62x, MARS(8T) to CPU: 273.89x
 - MARS(32T) to GPU: 17.42x, MARS(32T) to CPU: 186.23x

Thanks and Q&A

â

Xinhao Yang¹, Tianyu Fu¹, Guohao Dai², Shulin Zeng¹,

Kai Zhong¹, Ke Hong¹ and Yu Wang¹

¹Dept. of EE, BNRist, Tsinghua University, ²Shanghai Jiao Tong University E-mail: yxh21@mails.tsinghua.edu.cn, daiguohao@sjtu.edu.cn, yu-wang@tsinghua.edu.cn