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A Framework to Co-Optimize Robot Exploration
and Task Planning in Unknown Environments

Yuanfan Xu, Zhaoliang Zhang, Jincheng Yu, Yuan Shen and Yu Wang

Abstract— Robots often need to accomplish complex tasks in
unknown environments, which is a challenging problem, involving
autonomous exploration for acquiring necessary scene knowledge
and task planning. In traditional approaches, the agent first
explores the environment to instantiate a complete planning
domain and then invokes a symbolic planner to plan and perform
high-level actions. However, task execution is inefficient since the
two processes involve many repetitive states and actions. Hence,
this paper proposes a framework to co-optimize robot exploration
and task planning in unknown environments. To afford robot
exploration and symbolic planning not being independent and
separated, we design a unified structure named subtask, which
is exploited to decompose the robot exploration and planning
phases. To select the appropriate subtask each time, we develop
a value function and a value-based scheduler to co-optimize
exploration and task processing. Our framework is evaluated in
a photo-realistic simulator with three complex household tasks,
increasing task efficiency by 25%-29%.

Index Terms—Task Planning, Reactive and Sensor-Based Plan-
ning

I. INTRODUCTION

AUTONOMOUS robots rely on task planning to plan a
sequence of high-level actions, allowing them to perform

complex and multi-step tasks specified with goals, such as
“having a package into a kitting box” [1] and “having a drawer
closed” [2]. Symbolic planners successfully solve goal-based
task planning problems, given an appropriate task specification
and planning domain. The formal planning languages such as
STRIPS [3] or its successor PDDL [4] are widely used to
specify the domain, including a set of predicates to represent
the environment states and operators with defined precondi-
tions and effects. To generate plans and achieve its goals by
symbolic planners in the real world, an agent must instantiate
a PDDL planning problem with the objects and their states in
the environment, typically assumed a priori fixed [5], [6], [7].

In many applications, prior environmental information is
unavailable in advance, and the agent must explore the un-
known environment to acquire the knowledge for planning.
For example, a rescue robot must find the dangerous goods,
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Fig. 1: A robot exploration and task planning example in
unknown environments. The robot’s goal is to put an apple
on a plate. For our method, at t=0, the robot does not discover
any apples or plates, so it chooses exploration as the current
subtask and moves to the frontier. At t=1, an apple is found and
the robot changes the current subtask to planning with the goal
holding(apple) and executes its plan until t=3. At t=3, after
picking up the apple, the robot explores the environment again
until finding a plate. At t=7, the robot selects the subtask for
planning to place the holding apple on the discovered plate and
achieves the goal at t=9. On the contrary, in current methods
the exploration algorithm is deployed as a single module and
the symbolic planner is not invoked until exploration ends
(t=7). In this case, the robot wastes much time trying to reach
a state it has experienced before during exploration, such as
closeto(apple) at t=1 and t=12, closeto(plate) at t=7
and t=18, which results in low efficiency.

remove them, find the trapped people, and rescue them in a
cluttered and unknown environment. Additionally, a household
robot has to move around and manipulate objects in a newly-
arrived room, e.g., tables, boxes, and keys, to realize which and
how many objects are really in the room and need rearrange-
ment. Therefore, how to combine environmental exploration
and symbolic planning is a compelling challenge for task
planning in unknown environments.

Deep Reinforcement Learning (DRL) can be used to directly
map from raw sensory data to actions in a partially-observable
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world and an end-to-end manner [8], [9]. Nevertheless, these
methods cannot exploit the state-of-the-art autonomous explo-
ration approaches [10] and the power of symbolic planners
[11]. Hierarchical Reinforcement Learning (HRL) solutions
[12], [13] regard the robot explorer and planner as different
low-level policies and adopt a high-level meta-controller to
decide which of the policies to invoke. The main drawback
of RL-based methods is that they need to be designed and
trained for each specific task type, and can not generalize over
different tasks.

An alternative and domain-independent solution couples
the exploration and planning processes in chronological order
[14]. In this scheme, the agent explores the unknown envi-
ronment until discovering all the objects needed to satisfy
the goal and then invokes a symbolic planner to solve the
problem. However, the agent repeatedly experiences some of
the same states in the two independent processes. As illustrated
in Figure 1, the task goal is to put an apple on a plate. The
robot moves close to an apple to find and locate it during
exploration. Meanwhile, the symbolic planner also needs the
robot to be close to the apple and pick it up. Therefore, the
robot moves along the repeated trajectory and returns to an
already experienced state, which results in inefficiency.

This paper proposes a framework that allows an agent to
explore and plan simultaneously rather than in chronologi-
cal order to co-optimize exploration and symbolic planning
and eliminate the repeated states. We decompose a complex
robot task planning problem that needs all knowledge to be
solved into a series of simple subtasks, so that the robot can
accomplish the subtasks with part of information during ex-
ploration. The robot exploration problem is also decomposed
into subtasks, which consist of selecting a frontier (areas that
separate the free from the unknown regions) and navigating
to the corresponding location. The subtask integrates robot
exploration and task planning at the symbolic level so that
the two independent processes can be co-optimized with a
unified value function. Every time the robot arrives at a new
state, a designed Subtask Manager (Section IV-D) updates the
currently available subtasks and their values. Then a Value-
based Scheduler (Section IV-E) selects the appropriate subtask
contributing the most to the goal.

The contributions of this paper are summarized as follows:
• We propose a framework to co-optimize robot exploration

and symbolic planning, affording the agent to efficiently
solve complex tasks in unknown environments.

• We propose an approach that extracts subtasks from
robot exploration and symbolic planning to unify the
two originally independent processes. Additionally, we
develop a value-based scheduling strategy to co-optimize
information acquisition and task processing.

• We evaluate our framework on three tasks in a photo-
realistic simulator and improve execution efficiency by
about 29%.

II. RELATED WORK

In the field of robotics, task planning or symbolic planning
methods are widely used to solve complex tasks [1], [15].

ROSPlan [16] and Plansys2 [17] are two popular planning sys-
tems for robotics. They load the PDDL domain and problem
from files to generate the plan and encapsulate plan execution.
However, these general planning frameworks are only suitable
for solving tasks where the planning domain and problem are
available from the beginning.

There is a great deal of work related to integrated task
and motion planning (TaMP), planning under uncertainty, and
hierarchical planning. Most of them [18], [19], [20] assume
that the task-level planning domain is fixed and known to
the robot, and the uncertainty results from the motion-level
changes and constraints. However, we focus on solving task
planning problems where the grounded task-level planning
domain is initially unknown and try to find a balance between
robot exploration and task planning.

Various RL-based methods can address the problem of goal-
based symbolic planning in unknown environments. For exam-
ple, Garnelo et al. [8] designed a neural back-end to update
the abstract domain online every time the robot discovers new
objects and a symbolic front-end to output the current action.
Both HRL4IN [13] and HIP-RL [12] employ a hierarchical RL
architecture. HRL4IN exploited a high-level policy to create
subgoals for the low-level policy and capabilities (navigation,
manipulation, or both) that the low-level policy is allowed
to use. And HIP-RL consists of several predefined low-level
controllers, e.g., planner, explorer, or detector, and only trains
the high-level controller to decide which low-level controller
is invoked. However, these RL-based methods can only solve
a single task type as their inputs and rewards are domain-
specific. Besides, collecting training data tends to be expensive
in robot manipulation problems, which limits these methods to
solve simple tasks. On the contrary, our approach is domain-
independent and can solve different complex tasks.

OGAMUS [14] is a domain-independent framework for
robot task planning in unknown environments. It treats robot
exploration and planning as independent parts, where the agent
first explores and then plans. The sequential combination
suffers from repeated states and paths and is inefficient. Unlike
OGAMUS, our framework integrates robot exploration with
task planning at the symbolic level and co-optimizes the two
processes simultaneously.

III. PRELIMINARY

We start by introducing the necessary notations and back-
ground of symbolic planning, and the problem formulation on
applying symbolic planning in robotics scenarios.

Let P be a set of first order predicates, T a set of object
types, V a set of parameters (also called variables), and C a set
of object entities (also called constants). Each element of V
and C belongs to a specific type t ∈ T . P(V) denotes the set
of atoms P (v1, ..., vn), where P ∈ P and vi ∈ V , and P(C)
denotes the set of facts, obtained by grounding P(V) with the
real object entities in C. The state of the world s ∈ P(C) is
described by the set of facts that are true in it.

We use O to denote a set of operators, corresponding to the
basic actions that the robot can perform. An operator op ∈ O
is a tuple ⟨par(op), pre(op), eff+(op), eff−(op)⟩, where
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Fig. 2: (a) Example of domain description D. Predicates and
operators are categorized into property-related, navigation-
related, and manipulation-related. (b) Example of a Subtask
Stack.

par(op) ⊆ V is a list of parameters, pre(op), eff+(op),
and eff−(op) are subsets of P(par(op)) representing pre-
conditions, effects, and delete effects respectively. The ground
action op(c) is obtained by instantiating op with real object
entities c = ⟨c1, ..., cn⟩ in C.

In this paper, we use PDDL, a de-facto standard input
language of many symbolic planning systems, to model the
planning problems. It separates the definition of a planning
problem into two parts: the domain description D and the
problem description Q. D is a general model that captures the
common parts among all problems, andQ is a specific problem
instance based on this domain. D is a tuple ⟨P,O, T ,V⟩,
defining predicates (templates for logical facts), operators,
object types and parameters. Q is a tuple ⟨D, C, s0,G⟩ where
D is the template domain, C is the set of object entities,
s0 ⊆ P(C) is the initial state, and G is the goal represented
as a first order formula over P,V and C.

Task planning deals with synthesizing plans automatically
that combine basic operators to achieve a high-level goal.
A plan for a planning problem Q is an operator sequence
⟨op1(c1), ..., opn(cn)⟩, satisfying the existence of a state se-
quence ⟨s1, ..., sn⟩, such that pre(opi(ci)) ⊆ si−1, si =
si−1 ∪ eff+(opi(ci)) \ eff−(opi(ci)) for every 1 ≤ i < n,
and sn |= G. When applying symbolic planning to solve real-
world robotics problems, each operator op is accompanied
with a policy π(op) that maps it to low-level control actions,
and an occupancy grid map M of the scene is maintained
for path planning and marking the positions of the robot
and objects. Therefore, we denote the robot task planning
problem in unknown environments as Qu, which is a tuple
⟨D, C, s0,G,M⟩, where C = ∅, s0 = ∅, and all cells in M
are in unknown states from the beginning, and the agent only
knows D and G. Besides, G is fully parameterized as C = ∅ at
first. The agent needs to explore the environment, extend the
lists of entities and states, update the map step-by-step, and
plan to achieve the goal.

In addition to the definitions of these basic concepts, we
consider fine-grained classification of the predicates and opera-
tors in the planning domain (Figure 2(a)). According to current
robotic ability knowledge base (RFUniverse [21], Virtual-
Home [22] and the H2020 Robotics MAR [23]), the robots’
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Fig. 3: An overview of our framework. Before execution, the
Backward Planning Graph Generator generates a backward
planning graph and feeds it to the Subtask Manager. During
execution, the agent interacts with the environment through the
Perception module and Subtask Compiler. The Subtask Man-
ager and Value-based Scheduler are responsible for updating
the Subtask Stack and selecting the optimal subtask based on
current state.
atomic actions are categorized into navigation-related and
manipulation-related. Navigation-related operators are rele-
vant to the robot’s motion and only change the robot’s state,
whose effects are navigation-related predicates. Manipulation-
related operators enable the robot to manipulate objects in
the environment and change the state of the interacted object,
whose effects are manipulation-related predicates. Besides,
there is a class of predicates describing the specific property
of objects, named as property-related, which is static during
task execution.

IV. METHODS

This section introduces the proposed framework and how to
exploit it to co-optimize exploration and task planning.

A. Framework

Our framework (Figure 3) comprises five modules: Percep-
tion, Backward Planning Graph Generator, Subtask Manager,
Value-based Scheduler, and Subtask Compiler. Before starting
an episode, the Backward Planning Graph Generator creates
a backward planning graph based on the user-assigned task.
This graph is only generated once and is maintained and
employed for planning subtask generation in Subtask Manager.
During task execution, the Perception module extracts map
and state knowledge needed for exploration and planning from
raw sensor data. The two originally independent processes,
i.e., robot exploration and symbolic planning, are decomposed
into multiple subtasks with unified structures in the Subtask
Manager, which generates and updates subtasks based on the
current knowledge and the backward planning graph. The
Value-based Scheduler chooses which subtask is optimal and
should be executed to advance the current state towards the
goal state. The Subtask Compiler compiles the selected subtask
to a sequence of low-level control commands that the robot
can execute in the environment. This process is repeated until
the entire task has been accomplished.
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Fig. 4: (a) The backward planning graph for the task “put an apple in a drawer”. (b) A part of the backward planning graph
for the task “store a package on a car”.

B. Perception & Subtask Compiler

The Perception module is responsible for building an occu-
pancy map and transferring the sensor data obtained from the
environment to the planning knowledge. Concretely, this mod-
ule updates the set of object entities C, the state information
s containing facts, and occupancy grid map M at every step
based on real-time sensor data. The Subtask Compiler receives
the selected subtask and compiles its plan (a sequence of high-
level symbolic operators) to the low-level control commands.
For the navigation-related operators, the A∗ algorithm is used
for path planning, while for the manipulation-related operators,
APIs provided by the simulator are employed to interact with
objects. We build these two modules upon the corresponding
parts in OGAMUS [14], and show that the other three modules
can improve the task efficiency significantly at the same level
of perception and motion ability.

C. Backward Planning Graph Generator

The Backward Planning Graph Generator provides a back-
ward planning graph after the user assigns a task. This graph
is designed to find the intermediate states that the agent must
experience before achieving the final goal, which are exploited
in Section IV-D2 for subtask generation.

Unlike the Planning Graph [24], a Backward Planning
Graph BPG is a directed and leveled graph with two types
of nodes and two types of edges (Figure 4). The levels alter-
nate between proposition levels containing proposition nodes
(each labeled with a predicate) and operator levels containing
operator nodes (each labeled with an operator). Edges in a
BPG are established to represent relations between operators
and propositions. For operator nodes in the operator-level i,
“precondition-edges” connect them to their preconditions in
proposition-level i + 1, and “effect-edges” connect to their
effects in proposition-level i.

The graph can be generated level-by-level, and for every
proposition node in PL-i, we first search all operators in O
and match their effects with the proposition node. If matched,
i.e., the operator can assist the proposition, the operator is
added into the OL-i. Then we generate PL-(i+ 1) by adding
the preconditions of all operators in OL-i to this level. The
main difficulty in generating a BPG is defining the termination

condition. The traditional planning graph generation [24], [25]
starts with the initial global state, which is unavailable from
the beginning in unknown environments, and ends when every
goal proposition is present at a proposition level. On the
contrary, a BPG generation starts with the given goal G and
lacks termination conditions.

In order to bound the Backward Planning Graph extension,
we design three termination rules ( 1 2 3 in Figure 4): 1
The operator node does not add the property-related predicates
in its preconditions to the proposition level. In Figure 4(a),
pickupable(x) is a property-related proposition, so it will
not be extended. 2 The proposition node containing the
navigation-related predicate does not extend. In Figure 4(a), all
the closeto(x) nodes stop expansion. 3 The repeated propo-
sition node stops expansion. Besides, the subgraph between the
two same nodes is deleted. In Figure 4(b), the carry(x) node
appears twice, so the latter one stops expansion and the part
between the two nodes is deleted.

D. Subtask Manager

In the developed framework, a subtask is a structure that
contains three attributes: a subgoal represented as a predicate,
a plan to achieve the subgoal, and a value. For simplicity,
we use the subgoal to name the subtask, with Figure 2(b)
illustrating some subtask examples.

1) Exploration Subtask Generator: The exploration aims
to obtain all the information about the unknown environment
and build a map. Most exploration approaches are based on
frontiers, where at each processing step, the agent moves to
one frontier in the current map, and the exploration ends
until there is no frontier. Inspired by these popular exploration
methods, we design an algorithm to generate the subtask for
exploration (Algorithm 1). The inputs of Algorithm 1 are the
planning domain D, current map M, object entities C, and
state s, defined in Section III.
DetectFrontiers: First, the agent acquires the frontiers frs

in the current map M (line 1). The method considers that the
agent traverses each point inM and then selects the boundary
points in the unknown region and the known free region. Then
clustering methods [26] reduce the number of frontiers for
computational efficiency.
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Algorithm 1 Subtask generation for exploration

Require: D, M, C, current state s
Ensure: a subtask list st liste

1: frs ← DETECTFRONTIERS(M)
2: Create an empty subtask list st liste
3: for each fr in frs do
4: Create an empty subtask ste
5: Ce,Me ← ADDFRONTIER(C,M,fr)
6: ste.subgoal ← CREATESUBGOAL(D,Ce)
7: ste.plan ← PLAN(D, Ce, s, ste.subgoal)
8: ste.value ← COMPUTEVALUE(Me, s, ste.plan)
9: st liste ← APPENDSUBTASK(st liste, ste)

10: end for
11: return st liste

Algorithm 2 Subtask generation for symbolic planning

Require: D, M, C, current state s, BPG
Ensure: a subtask list st listsp

1: BPG ← PRUNEGRAPH(BPG,s)
2: subgoals ← EXTRACTFROMBPG(BPG)
3: subgoals ← INSTANTIATE(C,subgoals)
4: Create an empty subtask list st listsp
5: for each subgoal in subgoals do
6: Create an empty subtask stsp
7: stsp.subgoal ← subgoal

8: stsp.plan ← PLAN(D, C, s, stsp.subgoal)
9: stsp.value ← COMPUTEVALUE(M, s, stsp.plan)

10: st listsp ← APPENDSUBTASK(st listsp, stsp)
11: end for
12: return st listsp

Then the generator creates a list containing all the explo-
ration subtasks for each frontier fr in frs (lines 2-10).
AddFrontier: Since the frontiers change dynamically over
time, we build a new and temporary entity list and map for
every frontier fr by adding its entity and location into current
C and M (line 5).
CreateSubgoal: The subgoal of ste is obtained by instantiat-
ing the navigation-related predicate in D with the frontier in
Ce (line 6). Considering the planning domain in Figure 2 for
example, the navigation-related predicate in D is closeto,
and the frontier in Ce is fr1, so the subgoal is closeto(fr1).
Plan: A symbolic planner is invoked to solve the plan-
ning problem given the input planning domain D, the up-
dated set of objects, the current state s, and the exploration
subgoal ste.subgoal (line 7). In particular, as ste.subgoal
is a navigation-related proposition, ste.plan consists of a
navigation-related operator.
ComputeValue: According to the plan, current map, and
state, the value of the subtask can be estimated given a
value function (line 8). Further details will be introduced in
Section IV-E.

2) Planning Subtask Generator: Current methods can only
combine exploration and symbolic planning in sequence be-
cause the symbolic planner only considers a single goal G,
and the planner can only output an empty operator sequence

instead of a valid plan if the agent fails to obtain all necessary
information during exploration to satisfy G. For instance, if
the goal is to put an apple on a table, the planner can only
plan successfully if there is at least one object entity of type
apple and one of type table in current C and state s.

However, we find that the agent must experience some
intermediate states to achieve the final goal. For instance,
the agent has to hold an apple before it achieves the goal
of “having an apple on a table”, while planning to achieve
these intermediate states requires only part of the complete
information. For instance, planning for holding(apple1)
does not require the agent to know the existence and location
of any table. This motivates us to decompose the original
complete symbolic planning for the final goal into multiple
subtasks with smaller subgoals.

The Backward Planning Graph in Section IV-C provides
necessary intermediate states, and therefore we utilize it to
generate subtasks for planning. Algorithm 2 illustrates the
generation process in detail.
PruneGraph: At every step, the agent first prunes the graph
to avoid generating subtasks that have been already completed
(line 1). Concretely, the proposition nodes in the graph that can
be satisfied by s are deleted, together with all the subgraphs
that are extended from it. For the graph in Figure 4(a), if the
agent picks up an apple and s contains holding(apple1),
the three nodes (holding(x), pickup(x) and closeto(x)) and
connected edges are pruned.
ExtractFromBPG: After graph pruning, the agent extracts
subgoals, which are the essential intermediate states to achieve
before finishing the goal (line 2). A straightforward approach
is to consider all proposition nodes in BPG as subgoals.
However, we find that not all the facts contribute to the final
goal and are worth achieving in advance. For example, the
navigation-related proposition in the agent’s state constantly
changes when the agent moves, so it should not be regarded
as a valid subgoal. Therefore, we propose a method to extract
valuable subgoals (Figure 4(a) as an example): 1) First we
extract all the proposition nodes containing the manipulation-
related predicate (holding(x), holding(z), unlocked(y) and
in(x, y)). 2) Then, we make a fine-grained selection among
these propositions according to some rules, which can be
easily defined and implemented through BPG and the domain
description. For instance, holding(z) node in PL-3 that is ex-
tended from unlocked(y) in PL-2 has one neighborhood node
closeto(y), which is completely included in the neighborhood
nodes of unlocked(y). Therefore, unlocked(y) node is not
selected to avoid the robot first going close to the drawer
to unlock it, then going close to the drawer again to put
the apple. 3) At last, the remaining propositions (holding(x),
holding(z), and in(x, y)) are regarded as valid subgoals.
Instantiate: In unknown environments, the goal formula G
is parameterized as the agent has no prior knowledge about
object entities in the scenario, and appears as a forall ∀
or exists ∃ statement. Therefore, the subgoals extracted
from BPG are also parameterized. In order to consider as
many situations as possible to find the optimal plan, the agent
instantiate the subgoals with constants in C (line 3). For
instance, (holding(x),∃x, x ∈ Apple) is a subgoal extracted
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from BPG and there are two entities apple1 and apple2 in C.
The function transforms the parameterized subgoal to two in-
stantiated subgoals holding(apple1) and holding(apple2).

Lines 7-9 are the same as lines 6-8 in Algorithm 1, where
the agent creates the subgoal, plan, and value of the subtask
and adds it to the subtask list. In particular, the plans of the
subtasks in st listsp change over time. From the beginning,
all plans are empty because the symbolic planner cannot find
a plan for any subgoal. Nevertheless, with the discovery of
more objects, more plans become valid.

After generating st liste and st listsp, the Subtask Man-
ager merges them to obtain the Subtask Stack. Figure 2(b)
depicts an example of a Subtask Stack.

E. Value-based Scheduler

We utilize the Subtask Stack to design a value-based sched-
uler deciding which subtask in the stack the agent should
perform at each step. Completing the selected subtask aims
to contribute as much as possible to achieve the final goal
while requiring the minimum steps.

Two factors affect the realization of the final goal: 1)
Information gained by exploring unknown areas. As mentioned
above, the symbolic planner requires the necessary informa-
tion to find a plan, with more information helping find the
optimal plan. 2) Achievement of any intermediate subgoal. In
Section IV-C, we highlight that to realize the final goal the
agent needs to complete the subgoals in BPG in a bottom-
up fashion. Therefore, achieving any subgoal means that the
agent completes part of the task. Based on these factors, we
propose a value function for each subtask to compute its value
(line 7 in Algorithm 1 and line 9 in Algorithm 2) as follows:

V = −Costplan + αGaininfo + βGaintask (1)

• Costplan is the total number of steps to execute the sub-
task’s plan. For instance, the cost of gocloseto(table1)
is 10 if the agent requires ten movements to reach
table1, and the cost of pickup(apple1) is 1 as the
PickupObject action takes one step in the simulator.
The cost of a subtask without a valid plan is infinite.

• Gaininfo is the potential information gain, i.e., the
volume of the unmapped area covered during subtask exe-
cution. It is widely used to select the next-best-view point
to visit in autonomous exploration approaches [27], [28].
In our framework, for computational efficiency purposes,
we estimate the Gaininfo of a subtask by placing the
agent at the subtask destination and calculating the total
number of the unknown cells inside the agent’s Field of
View (FOV) and visibility distance.

• Gaintask corresponds to the reward gain according to the
contribution a subtask makes to completing the final goal.
The gain of each subtask is obtained using the backward
planning graph BPG. Concretely, we start from non-
extended subtasks, such as holding(x) and holding(z) in
Figure 4(a), and assign one to its Gaintask. The Gaintask

of the subtask on the lower proposition level is the sum
of all Gaintasks of the subtasks that are extended from
it. For example, the Gaintask of in(x, y) in Figure 4(a)

equals to two. This summation design is heuristic because
the lower the proposition level, the closer achieving the
goal, and the more rewards should be given. Especially,
Gaintask of the subtask for exploration is zero.

• α and β are two parameters balancing the magnitude
of the three values and adjusting the scheduling policy.
Intuitively, if α is large, the subtask for exploration is
prioritized, as exploration leads to more information gain.
On the contrary, if β is large, the agent prefers to execute
every subtask with a valid plan before continuing explo-
ration. Therefore, appropriate values of α and β enable
the agent to balance exploration and symbolic planning,
combining their advantages better and improving task
execution efficiency in unknown environments.

The designed value function affords each subtask in the
subtask stack to compute the value of its plan, where the
value-based scheduler is responsible for selecting the subtask
with the highest value. For example, the scheduler selects
subtask3 (blue color) in Figure 2(b) as the current best subtask
to execute because it has the highest value. By maximizing
the proposed value function (robot exploration cares about
Costplan and Gaininfo, and symbolic planning cares about
Costplan and Gaintask), we co-optimize robot exploration
and task planning in a unified way.

V. EXPERIMENTS

A. Simulator, Data Sets and Tasks

We experimentally evaluate our framework with the AI2-
THOR [29] simulator, an open-source interactive photo-
realistic environment for Embodied AI. The robot in AI2-
THOR is equipped with an RGB-D camera and perceives the
environment with a given FOV (set to 80◦). As introduced in
Section IV, our framework is designed to improve the robot
planning ability in unknown environments without leveraging
the perception ability. Thus we adopt a ground-truth Perception
module in simulation for our framework and all baselines to
achieve a fair comparison. AI2-THOR divides its operator
APIs into two categories, navigation and manipulation, which
is the same as our classification presented in Section III. The
basic behaviors of the agent include moving forward of a given
distance (set to 20cm), turning left or right of a given angle
(set to 45◦), picking up objects, putting an object onto or into
the target receptacle, and opening or closing objects. By using
these action APIs, we define the operators O in the planning
domain D and implement these operators during simulation.

The following experiments involve three types of tasks, and
the corresponding goals are:

1. Task On: Put an object of type t1 onto an object of
type t2: the agent is required to find at least two objects
of types t1 and t2 and put the one of type t1 on top
of the other of type t2. For instance, the agent has to
put an apple on a table. The corresponding goal is:
on(x, y),∃xy, x ∈ Apple, y ∈ Table.

2. Task In: Put an object of type t1 into an object of type
t2 which is locked from the beginning: the agent has to
find at least two objects of types t1 and t2 and one key,
unlock the one of type t2, and put the one of type t1 into

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2022.3214784

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on October 23,2022 at 02:29:48 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: A FRAMEWORK TO CO-OPTIMIZE ROBOT EXPLORATION AND TASK PLANNING IN UNKNOWN ENVIRONMENTS 7

TABLE I: Average episode length in different scenarios for three complex tasks.

On In Cook
small medium large small medium large small medium large

single multi single multi single multi single multi single multi single multi single multi single multi single multi
OGAMUS [14] 40.1 32.5 63.5 44.5 116.0 96.1 55.0 52.5 75.6 64.6 136.3 126.8 65.4 53.4 112.9 86.8 178.2 155.0
α=0.1, β=10 29.5 26.5 48.5 38.8 86.5 81.4 45.4 43.5 58.4 53.9 113.6 103.1 55.3 37.3 83.6 77.2 146.1 127.4
α=0.1, β=20 27.5 22.0 44.1 34.9 78.1 72.2 44.2 38.6 56.5 47.2 102.3 91.4 53.8 40.1 77.4 72.5 133.4 115.2
α=0.1, β=40 27.2 24.3 43.3 35.1 77.6 72.6 43.9 43.0 55.4 48.5 99.0 92.3 51.9 38.8 72.3 68.0 128.6 116.3
α=0.15, β=10 30.7 26.4 50.9 40.2 87.3 83.7 47.1 44.1 61.8 54.9 110.9 109.8 57.5 40.3 86.2 77.8 138.5 137.2
α=0.15, β=20 27.6 23.1 46.4 35.3 80.1 76.8 44.3 43.0 55.7 52.9 104.8 97.7 54.3 38.6 80.4 75.3 134.7 123.9
α=0.15, β=40 27.2 24.9 43.3 35.1 77.8 72.5 43.9 43.3 55.5 49.9 99.1 90.9 52.0 36.9 74.7 67.6 128.8 114.9
α=0.2, β=10 34.4 26.1 58.7 43.8 89.8 90.3 48.0 47.0 63.0 59.3 120.4 118.9 59.1 45.2 98.3 81.0 162.8 146.3
α=0.2, β=20 30.3 24.1 48.6 38.6 85.9 79.9 45.5 42.3 58.4 54.7 112.5 102.2 55.7 37.3 84.3 76.8 144.9 126.6
α=0.2, β=40 27.3 24.2 43.9 35.2 78.0 72.3 44.1 41.8 56.3 48.0 101.1 92.4 53.6 38.0 76.8 71.2 132.3 115.0

the other of type t2. For instance, the agent has to put an
apple into a locked drawer. The corresponding goal is:
in(x, y),∃xy, x ∈ Apple, y ∈ Drawer.

3. Task Cook: This task is that a home service robot
prepares breakfast for users, including a fried egg and
a piece of toasted bread. The agent has to find at least
one egg and one piece of bread as ingredients and to find
a pan and put it on a stove burner to fry the egg. To toast
the bread, a toaster should be discovered and used. The
corresponding goal is:fried(x) ∧ toasted(y),∃xy, x ∈
Egg, y ∈ Bread.

An episode is obtained by randomly placing the agent in
an unseen scene and providing it with a randomly generated
goal. An episode’s length is the number of interactions with
the environment (open, move ahead, pick up each count as
one action). We command the robot to finish the three tasks
on scenes with different map sizes and numbers of goal-
related objects. We use kitchens as small scenes (≈ 15m2),
living rooms as medium scenes (≈ 30m2), and apartments
as large scenes (≈ 40m2). A single scene contains only one
object per type, and a multi scene contains two objects per
type. We run our algorithm with 100 episodes for each type
of simulation scenario and collect the episode lengths when
the agent achieves the assigned goal. The average episode
length is used as an evaluation metric, and a shorter episode
length means higher efficiency. Real-world experiments are
conducted on an Ackermann mobile robot with an RGB-D
camera for tasks On and In. The mapping and localization of
this robot are achieved by deploying a visual SLAM system
on it. For simplicity of implementation, we assume that the
robot can manipulate an object virtually within a distance of
0.5m from it, instead of using a real robotic arm.

B. Parameter Selection

According to Section IV-E, the values of α and β have a
significant influence on our framework’s performance. Since
we comprehensively consider the effects of the three terms
from Equation (1), α and β cannot be too large to dominate
V or too small to be neglected. Therefore, we determine a
reasonable range value for α by randomly selecting simu-
lation scenarios for the agent to explore, count the average
number of steps (Costplan) required to finish an exploration
subtask while considering the corresponding information gain
(Gaininfo), and estimate the range of α that balances these

two values. The average value of α is 0.136, so we select
α = 0.1, α = 0.15 and α = 0.2 to study its impact. For β,
we count the average number of steps to complete a random
planning task in a known environment and given the related
rewards (Gaintask). Based on the average value 24.8, we
evaluate β = 10, β = 20 and β = 40.

C. Results

We challenge the suggested methods with different α and β
values against OGAMUS [14], with the corresponding results
reported in Table I. For tasks On, In, and Cook, our frame-
work improves the task execution efficiency by 29.0%, 25.9%
and 27.2%, respectively, due to: 1) The Subtask Manager
and Value-based Scheduler enable the agent to execute the
symbolic operators during exploration. Thus, the agent saves
many steps needed initially to reach the repeated states. 2) The
designed value function considers various factors, making the
selected exploration subtasks more beneficial to task planning
for the final goal. On the contrary, the robot exploration in
OGAMUS is random and not linked to planning.

In the experiments, we study the influence of map size on
performance. Since the same transition between two symbolic
states requires more steps in large scenes, we find that our
framework can save more steps on the large scenes than on the
small ones for the same task. This indicates that our framework
has greater utility in large scenes, e.g., factories and outdoors.

The experimental results show that different values of
parameters α and β lead to different efficiency improvements.
In general, if these parameters are within a reasonable range,
the policy mainly depends on the ratio of β and α. When
β
α is large, the value of the planning subtask is higher than
exploration, and the agent prioritizes all encountered planning
subtasks. In single scenarios, whenever the agent finds a goal-
related object, it does not need to further explore to find
another one, so a larger β

α often results in better performance.
In particular, when the ratio is beyond a threshold, such as
α = 0.15, β = 40 and α = 0.1, β = 40, the average
episode length remains almost constant, as the value of any
planning subtask is always higher than that of the exploration
subtask. However, a larger β

α is not necessarily better in multi
scenarios. In such scenes, additional exploration to discover
more objects of the same type is helpful in finding the optimal
plan. Therefore, the policy with α = 0.1, β = 20 performs best
in some multi scenarios.
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In the real-world experiments, compared with OGAMUS,
our method shortens the average trajectory length by 26.8%
and 26.0% respectively. These results show that our framework
can perform well without access to perfect world state and has
good transferability from simulation to reality.

To summarize, our framework achieves 25%-29% efficiency
improvement on three different tasks and shows greater po-
tential in the large scenes. A larger β

α makes task execution
more efficient when there is only one plan to achieve the
goal. However, for planning problems with multiple feasible
plans, the upper threshold of β

α should be appropriately set to
avoid finding a plan with inferior performance. The most time-
consuming module in our framework is Backward Planning
Graph Generator, but it only works once before performing
the task and has no influence on the online task execution.

VI. CONCLUSION & FUTURE WORK

This paper proposes a framework for accomplishing com-
plex tasks in unknown environments by combining robot
exploration and task planning. We design a structure named
subtask and suggest the corresponding generation algorithms
to represent the two independent processes in a unified manner.
Moreover, we design a value function and a scheduler, which
consider the information gain, direct contribution to the goal,
and execution cost, to co-optimize information acquisition and
symbolic planning. Evaluation results on complex tasks show
that our framework improves execution efficiency by 29% and
has better potential in large scenes.

Future work will address the problem that the parameters α
and β need to be tuned manually in scenes of different sizes
by designing an adaptive module to update parameters online.
Moreover, as different task definitions and PDDL descriptions
affect the extraction of subgoals, we plan to test our framework
on more tasks to enrich the fine-grained selection rules.
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