Learning Efficient Multi-Agent Cooperative Visual Exploration

Chao Yu*, Xinyi Yang*, Jiaxuan Gao*, Huazhong Yang, Yu Wang and Yi Wu

jxwuyi@gmail.com
Visual indoor exploration with multiple agents, where the agents need to cooperatively explore the entire indoor region using as few steps as possible.
Framework (MAANS)

Neural SLAM module outputs agent-centric local map and the pose estimation.
Framework (MAANS)

Map Refiner unifies the map representation.
Framework (MAANS)

Spatial Coordination Planner (SCP) applies a transformer-based relation encoder and a spatial action decoder.
The local planner performs trajectory planning; The local policy generates actions.
Spatial Coordination Planner (SCP)
Spatial Coordination Planner (SCP)

Each agent’s input map
Spatial Coordination Planner (SCP)

NCNN-based feature extractors obtain a 8×8 feature map.
Spatial Coordination Planner (SCP)

Transformer-based relation encoder capture the intra-agent interactions.
Spatial Coordination Planner (SCP)

Spatial action decoder captures the spatial structure.
Map Refiner and Map Merger
Map Refiner and Map Merger

Map Refiner:
- Map Composition
- Coordinate Transformation
- Map Enlargement

Map Merger:
- Map Refiner
 - Map Composition
 - Coordinate Transformation
 - Map Enlargement

Agent 1:
- Agent-centric Local Map
- Agent-centric Global Map
- Refined Global Map
- Map Fusion
- Merged Global Map

Agent k:
- Agent-centric Local Map
- Agent-centric Global Map
- Refined Global Map

Agent N:
- Agent-centric Local Map
- Agent-centric Global Map
- Refined Global Map
Map Refiner

Composes the local maps to recover the agent-centric global map
Map Refiner

Transforms the coordinate system based on the pose estimates
Map Refiner

- **Agent 1**
 - Agent-centric Local Map → Map Composition → Agent-centric Global Map → Coordinate Transformation → Normalized Global Map → Map Enlargement → Refined Global Map

Crops the **unexplorable boundary** and enlarges the house region
Map Refiner and Map Merger
2-agent-setting training performance
Average training performance on trained maps

<table>
<thead>
<tr>
<th>Methods</th>
<th>ACS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nearest APF</td>
<td>102.79(1.55)</td>
</tr>
<tr>
<td>Utility</td>
<td>105.62(0.89)</td>
</tr>
<tr>
<td>RRT</td>
<td>112.21(1.39)</td>
</tr>
<tr>
<td>MAANS</td>
<td>130.59(1.53)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Behavior Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cov. Ratio</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>0.91(0.01)</td>
</tr>
<tr>
<td>0.90(0.01)</td>
</tr>
<tr>
<td>0.92(0.01)</td>
</tr>
<tr>
<td>0.96(0.00)</td>
</tr>
</tbody>
</table>

RRT produces the best result among planning-based methods.

MAANS outperforms RRT with a clear margin.
Exploration Comparison in 2-agent Training

RRT V.S. MAANS
Middle Map Colebrook

RRT
Overlap: 0.63
Steps: 188.72
Ratio: 0.98
ACS: 118.71

MAANS
Overlap: 0.45
Steps: 133.99
Ratio: 0.98
ACS: 141.86

More efficient global goal
Large Map Delton

RRT
Overlap: 0.60
Steps: 235.24
Ratio: 0.93
ACS: 106.87

MAANS
Overlap: 0.49
Steps: 171.77
Ratio: 0.95
ACS: 133.20

More efficient global goal
3-agent-setting training performance
Average training performance on trained maps

<table>
<thead>
<tr>
<th>Methods</th>
<th>ACS</th>
<th>Behavior Statistics</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cov. Ratio</td>
<td>Steps</td>
<td>Over. Ratio</td>
<td></td>
</tr>
<tr>
<td>Nearest</td>
<td>118.05(0.63)</td>
<td>0.91(0.00)</td>
<td>188.58(2.02)</td>
<td>0.46(0.01)</td>
<td></td>
</tr>
<tr>
<td>APF</td>
<td>107.88(1.39)</td>
<td>0.87(0.01)</td>
<td>207.20(2.41)</td>
<td>0.45(0.01)</td>
<td></td>
</tr>
<tr>
<td>Utility</td>
<td>121.62(0.85)</td>
<td>0.94(0.00)</td>
<td>180.82(2.25)</td>
<td>0.58(0.00)</td>
<td></td>
</tr>
<tr>
<td>RRT</td>
<td>127.64(1.31)</td>
<td>0.95(0.01)</td>
<td>155.13(3.26)</td>
<td>0.44(0.01)</td>
<td></td>
</tr>
<tr>
<td>MAANS</td>
<td>143.09(0.71)</td>
<td>0.96(0.00)</td>
<td>132.95(1.86)</td>
<td>0.35(0.02)</td>
<td></td>
</tr>
</tbody>
</table>

RRT produces the best result among planning-based methods. **MAANS** still produces the best final coverage ratio, the fewest steps, the least overlap ratio and the highest ACS.
Exploration Comparison in 3-agent Training

RRT V.S. MAANS
Middle Map Colebrook

RRT
Overlap: 0.44
Steps: 155.13
Ratio: 0.95
ACS: 127.64

MAANS
Overlap: 0.35
Steps: 132.95
Ratio: 0.96
ACS: 143.09

More efficient global goal
2-agent-setting evaluation performance
A simple training-and-distillation policy, **MAANS-TD**, can work on multiple maps and eventually **generalize to unseen maps**.
Average evaluation performance on unseen maps

<table>
<thead>
<tr>
<th>Methods</th>
<th>ACS</th>
<th>Cov. Ratio</th>
<th>Steps</th>
<th>Over. Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nearest</td>
<td>122.39</td>
<td>0.94</td>
<td>198.90</td>
<td>0.55</td>
</tr>
<tr>
<td>APF</td>
<td>120.07</td>
<td>0.93</td>
<td>202.09</td>
<td>0.61</td>
</tr>
<tr>
<td>Utility</td>
<td>128.34</td>
<td>0.95</td>
<td>173.40</td>
<td>0.68</td>
</tr>
<tr>
<td>RRT</td>
<td>127.43</td>
<td>0.96</td>
<td>168.24</td>
<td>0.59</td>
</tr>
<tr>
<td>MAANS-TD</td>
<td>137.60</td>
<td>0.96</td>
<td>104.47</td>
<td>0.58</td>
</tr>
</tbody>
</table>

RRT produces the best result among planning-based methods. **MAANS-TD** achieves the best final coverage ratio, the fewest steps and a comparable overlap.
Exploration Comparison in 2-agent Evaluation

RRT V.S. MAANS-TD
Unseen Map *Nicut*

RRT
- Overlap: 0.60
- Steps: 217.98
- Ratio: 0.93
- ACS: 109.46

MAANS-TD
- Overlap: 0.56
- Steps: 213.44
- Ratio: 0.93
- ACS: 120.64

More efficient global goal
Thanks

Visit our website for more information

MAANS

https://sites.google.com/view/maans

Department of Electronic Engineering, Tsinghua University

Institute for Interdisciplinary Information Sciences, Tsinghua University