CNN-based Monocular Decentralized SLAM on embedded FPGA

Jincheng Yu1, Feng Gao1, Jianfei Cao2, Chao Yu1, Zhaoliang Zhang1,
Zhengfeng Huang2, Yu Wang1 and Huazhong Yang1

Abstract—Decentralized visual simultaneous localization and mapping (DSLAM) can share locations and environmental information between robots, which is an essential task for many multi-robot applications. The visual odometry (VO) is a basic component to estimate the 6-DoF absolute pose for robot applications. Decentralized place recognition (DPR) is a fundamental element to produce candidate place matches for sharing information among different robots. The goal of this paper is to build a CNN-based real-time DSLAM system on embedded FPGA platforms. Because of the high precision requirement of VO, the existing quantization methods cannot be directly applied. We improve the fixed-point fine-tune method for the CNN-based monocular VO, which enables VO can be deployed on the fixed-point FPGA accelerator. We also explore the influence of the DPR frequency on the DSLAM results, and find out a proper DPR frequency to balance the accuracy and speed. A cross-component pipeline scheduling method is proposed to improve DPR frequency and further improve the final accuracy of DSLAM under the same hardware resource constraints.

I. INTRODUCTION

Decentralized visual simultaneous localization and mapping (DSLAM) can share locations and environmental information between robots, which is an essential task for many multi-robot applications. Cieslewsk et al.\cite{1} conclude the basic procedure of DSLAM as Fig. 1.

![Fig. 1. DSLAM framework. VO is used to calculate the intra-robot 6-DoF absolute pose from the input frames. DPR produces a compact image representation to be communicated among robots. Match stage finds out candidate inter-robot place recognition matches. RelPose requires data from the matched robots and establishes relative poses between the robots trajectories. DOpt does optimization with the trajectories, intra-robot pose measurements from VO and inter-robot relative poses from RelPose, and updates the trajectories.](image)

This framework contains five components: Decentralized Place Recognition (DPR), Visual Odometry (VO), Match, Relative Pose estimation (RelPose) and Decentralized Optimization (DOpt). DPR and VO are intra-robot operations, requiring high computing resources on embedded system. The results of DPR can be used for both intra- and inter-robot loop-closure detection. Match, RelPose and DOpt are inter-robot operations, and consume most of the communication resources of DSLAM system. The RelPose part relies on the VO component since it can benefit from re-using VO’s data and computing resources.

Cieslewsk et al.\cite{1} use ORB-SLAM\cite{2} for VO and NetVLAD\cite{3} as the DPR component. These two algorithms both consume a large amount of computing and storage resources, posing a huge challenge to the DSLAM on embedded systems. The detailed flow of this method is shown in Fig. 2(a).

With the development of convolutional neural network (CNN), we can reconstruct the depth and pose with the absolute scale directly from a monocular camera, making monocular VO more robust and efficient. And monocular VO methods, like Depth-VO-Feat\cite{4}, make DSLAM system much easier to deploy than stereo ones. Furthermore, although there are previous works to design accelerators for robot applications, such as eslam\cite{5}, the accelerators can only be used for specific applications, with poor scalability. CNN is a general framework, which can be applied to a variety of robot applications with a unified accelerator and is more flexible.

In order to take advantage of CNN in the embedded DSLAM system, we adopt Depth-VO-Feat\cite{4} as the monocular VO, and we use NetVLAD\cite{3}, which is also used in previous DSLAM system\cite{1}, to do DPR. We build up a CNN-based monocular real-time DSLAM system on the embedded FPGA platform with following contributions:

- Fixed-point arithmetic and representation works for many applications well, such as image classification\cite{6} and object detection\cite{7}. Different from these applications, VO task needs higher numerical precision. Thus, the traditional quantization method does not work for our monocular VO, so we propose a fixed-point fine-tune method for the CNN-based VO.
- The DPR in the previous DSLAM system\cite{1} is operated only for key frames. Different from the ORB-SLAM, the CNN-based VO cannot tell the key frames directly. Thus, we need to execute DPR as frequently as possible. Due to the limited hardware resources, it is challenging to do DPR for every input frame. We explore the influence of the DPR frequency on the DSLAM performance and propose a cross-component pipeline scheduling method,
to improve the DPR frequency.

- To the best of our knowledge, this is the first work to implement all components of monocular DSLAM with CNN. We deploy the system on the Xilinx ZCU102 MPSoC [8] hardware platform with DNN Processing Unit (DPU) [9]. ZCU102 is an evaluation board for MPSoC [10] provided by Xilinx and DPU is a CNN accelerator. The proposed DSLAM system is illustrated in Fig. 2(b).

II. HARDWARE ARCHITECTURE

The CNN-based VO and DPR components consume more than tens of billions operations and thus are difficult to deploy on embedded systems. The Xilinx MPSoC [10] is a chip with ARM cores and FPGA fabric. The architecture of MPSoC is illustrated in Fig. 3. Our target hardware platform, ZCU102 [8], is a popular evaluation board for the MPSoC chip.

The ARM cores with an embedded Linux operating system are called Processing System (PS). The FPGA fabric is called Programmable Logic (PL). The peripherals like cameras and communication units (WiFi or others) are accessible to PS. The high-bandwidth on-chip AXI interface is used to communicate between PS and PL. PS and PL can also share DDR to transfer large amounts of data. Xilinx CNN accelerator, called DNN Processing Unit (DPU) [9], is one of the state-of-the-art CNN accelerators and is known for its energy efficiency in running various CNN structures. We deploy the DPU on the PL side of Zynq SoC.

Though FPGA can significantly improve the performance and energy efficiency of CNN inference, it cannot efficiently calculate the floating-point number and thus requires fixed-point parameters and intermediate data in CNN.

III. METHODOLOGY

A. Decentralized Place Recognition (DPR) with NetVLAD

The goal of place recognition (DPR) is to calculate a given frame into a compacted representation. Every place can be encoded as a compacted code that can be easily transferred at low communication costs. Recent advances of CNNs make it possible to build a robust end-to-end place recognition method, and NetVLAD [3] is one of the best CNN-based DPR methods. The dataflow of NetVLAD is illustrated in Fig. 4.

The CNN backbone extracts the feature map from the input image, and then the $W \times H \times D$ feature map is transformed into $N \times D$ local descriptors. Vector of Locally Aggregated Descriptors (VLAD) is a popular operation to capture statistical information of local descriptor aggregated over the input image. There are totally N descriptors $(x_1, x_2, ..., x_N)$. There are K cluster centers $(c_1, c_2, ..., c_K)$

Fig. 2. Comparison between previous DSLAM framework and our implementation.

Fig. 3. Xilinx Zynq MPSoC Platform

Fig. 4. NetVLAD Operation. The components of NetVLAD operation are deployed on PS side, including the Conv Layer to generate $a_{i,j}$ and PCA.
as VLAD’s parameters, which are determined in the training phase. Each descriptor is a D dimension vector as well as each cluster center. The weighted sum of local descriptors to each cluster center reflects the “coefficient” of the cluster center. Concatenating the coefficient of each cluster center encodes the whole input picture.

In the VLAD step, the coefficient of the ith cluster center (V_i) is calculated as follows, and each coefficient is a vector whose length is D.

$$V_i = \sum_{j=0}^{N} a_{i,j} \cdot (x_j - c_i)$$

(1)

A convolution layer also generates the weight parameters $a_{i,j}$. The global descriptor (V_{all}) which encodes the whole image is the concatenation of the coefficient of each cluster center, and V_{all} is a vector whose length is $K \times D$ length.

$$V_{all} = \{V_1, V_2, ..., V_K\}$$

(2)

The global descriptor is then compressed by Principal Component Analysis (PCA) to obtain the final compact descriptor ($V_{compact}$) of the image.

$$V_{compact} = PCA(V_{all})$$

(3)

To generate the weighted parameters a, a softmax operation, which is not supported by the DPU, is processed following a convolution layer with 1×1 kernels. The NetVLAD operations, including 1×1 convolution, softmax, VLAD and normalization, are not efficiently supported by the DPU or need floating-point number system. Therefore, the NetVLAD operations are running on the PS side.

B. Quantization for NetVLAD

To deploy the CNN backbone of NetVLAD on the DPU, we need to quantize the floating-point CNN model to the FPGA friendly fixed-point model. Previous works use the dynamic-precision data quantization flow to find the optimal fractional length (f_l) of the weights and activations for each layer of CNN respectively.

For a fixed-point number n, its value can be expressed as:

$$n = \sum_{i=0}^{bw-1} B_i \cdot 2^{-f_i} \cdot 2^i$$

(4)

where bw is the bit width and f_i is the fractional length which can be negative. B_i is the digit on the ith bit, which is 0 or 1. For the parameters or activations of a layer, the data quantization flow aims to find the optimal fractional length for the corresponding data:

$$f_l = \arg \min_{f_l} \sum |D_{float} - D(bw, f_l)|$$

(5)

where D is layer parameters (in Fig. 5(b) is w) or the activations (in Fig. 5(b) is x) of a layer, and $D(bw, f_l)$ is the fixed-point representation under given bw and f_l. We analyze the dynamic range of the data, and then find the optimal f_l.

In our hardware design, the bit width of all weights and intermediate feature maps are fixed to 8. The bw in Equations (4) and (5) is set as $bw = 8$.

$$D(f_l) = D(8, f_l)$$

(6)

In the dynamic-precision data quantization flow, we avoid to fine-tune the CNN model. Previous work shows that this quantization method leads to negligible accuracy decline in many applications, such as classification [6] and object detection [7].

This method also works for NetVLAD. We run the CNN layers in fixed-point number and keep the VLAD operations in floating-point number. Quantitative results will be given in Section IV.

C. CNN-based Visual Odometry

We adopt Depth-VO-Feat [4] in the DSLAM system to estimate poses from the input monocular camera. The training and forwarding framework is illustrated in Fig. 5(a).

Depth-VO-Feat uses image reconstruction loss (L_{ir}) as a self-supervised signal and jointly trains two networks for depth (DispNet) and odometry estimation (VONet) without
Conv with the dynamic-precision data quantization flow with the predicted VO results (Equation (5), we find out the optimal intermediate featuremaps \(x \) for each pixel (7)).

By including this reconstruction loss for both spatially adjacent input pair \(\{ I_{L,t2}, I_{R,t2} \} \) and temporally adjacent pair \(\{ I_{L,t2}, I_{L,t1} \} \), we use stereo sequences in the training phase and monocular sequences in the testing phase. With the calibrated spatial relationship between the left and right cameras (\(T_{RtoL} \)), our VONet can learn the real world scale for time-adjacent frames (\(T_{2to1} \)).

D. Fixed-Point fine-tune for CNN-based VO

The VO task requires much higher computational precision than other applications, and the VO errors accumulate during the DSLAM execution. If we directly quantize the entire VONet with the dynamic-precision data quantization flow introduced in Section III-B, the accuracy declines sharply.

To keep the accuracy of the VONet, we adopt the fixed-point fine-tune method[7] to fine-tune the VONet. There are two steps in the general fine-tune method: 1) feedforward and 2) backpropagation, both of which are calculated in floating-point numbers. In the fixed-point fine-tune method, fixed-point feedforward is applied to some layers, while the backpropagation step still runs in floating-point. After each backpropagation, the floating-point weights \(W_{float} \) and the intermediate featuremaps \(x_{float} \) are updated. According to Equation (5), we find out the optimal \(f_{l} \) for each weight and intermediate featuremap.

In Fig. 5(b), we fine-tune the convolution layers \(Conv_{i} \) with the fixed-point fine-tune method and directly fine-tune the fully connected (FC) layers \(FC_{i} \) in floating-point number. To balance the speed and the accuracy, we also attempt to fine-tune some of FC layers in fixed-point. The results on speed and accuracy will be shown in detail in Section IV.

E. Deployment of VO and NetVLAD on MPSoC

We are here to remind readers that although there is a fixed-point fine-tune method for VO, its purpose is to obtain a high-precision fixed-point network. In actual deployment, we only need to deploy the feedforward phase of the fixed-point network to the embedded system.

As introduced in Section II, the CNN parts of VO and NetVLAD, especially the convolutional layers, are transferred to fixed-point and deployed to the PL part of MPSoC. Other parts, such as the VLAD operation in NetVLAD and some FC layers in VO, are calculated on the PS part of MPSoC.

Different from the previous DSLAM system [1], whose DPR is operated only for key frames, our CNN-based VO cannot tell the key frames. Thus, we need to execute DPR as frequently as possible.

In a robot, some tasks have higher priority, such as VO. VO is the basic elements of robot perception, the estimation of the robot itselfs location and the obstacles’ position is based on VO. If VO doesn’t work well, robot can not estimate the surrounding environment, causing collisions or even damage. Furthermore, the error of the VO is cumulative. The error of a single frame will affect all of the subsequent frames. Thus, in DSLAM, the priority of VO is higher than that of DPR. Because DPR is only related to efficiency, yet VO ensures system safety.

Because the DPU kernel does not support multi-threading, we need to prioritize VO calculations, which are calculated for each input frame. NetVLAD is assigned to be executed at the time interval of VO calculation, so that the execution pipeline of VO and NetVLAD is shown in Fig. 6(a). The time interval for reading the camera is \(T_{r} \), the VO run time is \(T_{V} \) and the NetVLAD run time is \(T_{D} \).

VO needs to be executed once for every 1 input frame. The NetVLAD operation is operated for every \(N \) VO frames. The operation of the VO frames \((N \times T_{V}) \) and the NetVLAD
operation \((T_D) \) should be finished within the time of reading \(N \) frames \((N \times T_f) \). \(N \) is constrained by Equation (8).

\[
N \times T_f > T_D + N \times T_V
\]

(8)

F. Cross-Components Scheduling

We optimize the pipeline of two components on Zynq MP-SOC to schedule them effectively. The pipeline is illustrated in Fig. 6(b). Both NetVLAD \((T_D) \) and VO \((T_V) \) time can be divided into two parts:

\[
T_D = T_{D,PL} + T_{D,PS}
T_V = T_{V,PL} + T_{V,PS}
\]

(9)

\(T_{D,PL} \) is the CNN time of NetVLAD deployed on the PL side (Programmable Logic, FPGA side), \(T_{D,PS} \) is the VPLAD operations of NetVLAD, which is operated on the PS side (Processing System, CPU side). \(T_{V,PL} \) is the CNN time of VO on the PL side, \(T_{V,PS} \) is the time of the FC layers in floating-point number and the geometry transformation of VO, which is operated on the PS side.

Considering the thread on PL, the PL part of the \(N \) VO frames \((N \times T_{V,PL}) \) and the NetVLAD operation \((T_{D,PL}) \) should be finished within the time of reading \(N \) frames \((N \times T_f) \). The time constraint is given as Equation (10).

\[
N \times T_f > T_{D,PL} + N \times T_{V,PL}
\]

(10)

The thread for VO on PS constrains the NetVLAD frequency as Equation (11).

\[
N \times T_f > T_{D,PL} + T_{V,PL} + (N - 1) \times T_{V,PS}
\]

(11)

The PS part of current NetVLAD should finish before computing the PS part of the next NetVLAD frame. This constraint can be written as Equation (12).

\[
N \times T_f > T_{D,PS}
\]

(12)

The execution time of our design will be given in Section IV.

IV. EXPERIMENTS

In this section, we will evaluate the speed and accuracy of each proposed CNN component, as well as the impact of our optimization on final DSLAM performance.

A. VO with Fixed-Point finetune

We evaluate our VO approach with DPU on the KITTI dataset [11]. The dataset contains video sequences with stereo pairs, with original image size at 1242 × 375 pixels. In the following experiments, we resize the image to 608 × 160 in training and testing processes, just like the original Depth-VOFeat [4] does. We use the 00-08 sequences from KITTI as the training set, and evaluate the VONet on sequence 09 and 10 on the sub-sequences at the length of [100,200, ..., 800] and report the average translational and rotational errors in Table I. The comparison of the estimated trajectory for different methods is illustrated in Fig. 7. We use the popular SLAM system, ORB-SLAM [2], as the baseline.

The initial learning rate is \(1 \times 10^{-5} \) and the number of fine-tune iterations is 240000, which is sufficient to train Depth-VOFeat from scratch. We snapshot the network weights of VONet every 5000 iteration and list the accuracy of the best snapshot in Table I.

As introduced in Section III-D, we use the fixed-point fine-tune method to guarantee the accuracy of CNN-based VO. Besides running the convolutional layers in fixed-point number on the PL side, we also tried to make some FC layers in fixed-point number. The Quant. Strategy indicates the different configurations of fixed-point fine-tune. The Fixed Part is the fixed-point layers on PL, and for example, \((Conv + FC1, 2)\) means running all convolutional layers as well as the first two FC layers(FC1 and FC2) on in fixed-point number. The Float Part is the floating-point layers for accurate pose prediction on PS. The last FC layer \((FC_{pose})\) should always be operated in floating-point number. Otherwise, the VO fails and the predicted rotation is always stationary.

It is difficult to deploy the floating-point CNN on the real-time embedded system. Thus the floating-point results is evaluated on the GPU server. As to the real-time embedded results, because the computation volume of FC layers is much less than that of CONV layers, most of the computation time is spent on the fixed-point CONV layers on the PL side. Computing FC layers on PL or PS has little effect on VO computing speed. However, computing FC layers in floating-point or fixed-point strongly affects VO accuracy. For this reason, we deploy all convolutional layers in fixed-point number on PL and all FC layers in floating-point number on PS.

B. NetVLAD with DPU

We evaluate the NetVLAD performance on the loop-closure dataset based on KITTI [12]. This dataset labels the ground truth of loop closure for these sequences based on the metric
Experimental results show that the dynamic-precision data quantization flow without fine-tuning not only works for classification and detection tasks, it also works for scene encoding tasks. In this paper, two lengths (128 and 4096) are used for scene encoding. In the shorter code experiment, the fixed-point results are always worse than the floating-point results. In the longer code experiment, the fixed-point results may reach a better precision under some special recall rates.

C. Frequency Exploration of DPR in DSLAM

We adopt Depth-VO-Feat [4] for VO, and we use NetVLAD [3] to do DPR in our DSLAM system. Due to the limited hardware resources, it is challenging to do DPR for every input frame. In this section, we explore the influence of the DPR frequency on the DSLAM results.

We evaluate our DSLAM system on KITTI odometry dataset. Firstly we divide the KITTI sequence 00 into two subsequences with a 10-frame overlap, because there are many loop-closures to evaluate DPR in the 00 sequences, yet the other sequences have much fewer loop-closures, which makes it difficult for DSLAM to merge trajectories. Then, we resize the input image to 608×160 for VO and DPR. We treat each subsequence as the raw data for each robot. We use the same method in [1] to simulate the DOpt and merge the two trajectories. The DOpt method used in this work is proposed in [14]. The DOpt method is based on the factor graph optimization method, which a popular method to estimate the trajectory in SLAM. The pose of each input camera frame is a node in the factor graph, and the VO provides the constrains between the intra-robot successive frames, in which the estimation error may accumulate. The NetVLAD provides the constrains between different robots at the same scene, or the constrains inside the same robot with loop-closure, which can correct accumulated errors.

The VO is operated for every input frame, yet the NetVLAD can only be operated once for N input frames ($NetVLAD/N$ frames). The higher the operating frequency of NetVLAD, the smaller the N, the more constraints between different robots or intra-robot loop closure can be provided, and the better the accumulated VO errors can be corrected. The merged trajectory at different NetVLAD frequency is shown in Fig. 9.

![Precision-Recall Curve](image)

Fig. 8. PR curves on sequence 00. The original floating-point NetVLAD with an output of 4096 dimensions (Blue). The fixed-point NetVLAD 4096-D output (Green). The original floating-point NetVLAD with 128-D output (Red). The fixed-point NetVLAD 128-D output (Yellow). The 128-D shorter code consists of the first 128 elements of the 4096-D longer code.

The CNN model is quantized with the dynamic-precision data quantization flow introduced in Section III-B and is deployed on the PL side of DPU. The other VLAD operations are deployed on the PS side.

The precision-recall curves (PR curves) of the original NetVLAD with an output of 4096 dimensions (Blue), fixed-point NetVLAD 4096-D output (Green), original NetVLAD with 128-D output (Red), and fixed-point NetVLAD 128-D output (Yellow) are shown in Fig. 8. We take sequence 00 as the test sequence, and achieve similar accuracy with the floating-point model of the same output dimensions. The 128-D shorter code consists of the first 128 elements of the 4096-D longer code. As illustrated in Fig. 4, the 4096-D code is generated by the PCA operation, and the more advanced elements are in coding, the more critical they are. The first 128 elements can sufficiently describe the scenes in our following experiment.

TABLE I

VISUAL ODOMETRY (VO) RESULTS ON TEST SEQUENCES (09, 10)

<table>
<thead>
<tr>
<th>Method</th>
<th>Quant. Strategy</th>
<th>Seq. 09 t_{err} r_{err}</th>
<th>Seq. 10 t_{err} r_{err}</th>
<th>run time (ms/frame)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORB-SLAM</td>
<td></td>
<td>15.30 0.26</td>
<td>3.68 0.48</td>
<td>230 2</td>
</tr>
<tr>
<td>Ours</td>
<td>Conv+FC1,2 FC_pose</td>
<td>13.27 5.27</td>
<td>14.75 7.78</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Conv+FC1 FC2+FC_pose</td>
<td>13.80 4.38</td>
<td>11.3 4.30</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Conv FC1.2+FC_pose</td>
<td>10.27 4.08</td>
<td>8.84 4.01</td>
<td>13</td>
</tr>
</tbody>
</table>

1 t_{err} is the average relative translational drift error. r_{err} is the average absolute rotational drift error.
2 We run the monocular ORB-SLAM [2] on the PS part of Xilinx MPSoC.
3 It is difficult to deploy the floating-point CNN on the real-time embedded system. The floating-point results are evaluated on the GPU server.
As illustrated in Fig. 9, the less frequently the NetVLAD is operated, the trajectory merging performance is worse. When the N is higher 14, i.e., the frequency of NetVLAD is less than running NetVLAD on every 14 frames, the trajectory is divergent, and the loop-closure of the blue trajectory is totally missing.

Though Fig. 9(e) looks better than a higher NetVLAD frequency (Fig. 9(d)), the missing of detecting intra-robot loop-closures leads to the failure of fine-grained trajectory merging. For example, as illustrated in the shadowed area in Fig. 9(e), there are two roads in the final merged trajectory, yet there is only one road in the ground truth. The missing of detecting some of the inter-robot loop-closures and the partially detected intra-robot loop-closures in Fig. 9(d) would distort the trajectory and make the merged trajectory seems worse than the lower NetVLAD frequency (Fig. 9(e)). When the frequency of NetVLAD goes high to running once NetVLAD every 8 VO frames (Fig. 9(c)) or higher (Figs. 9(a) and 9(b)), the key loop-closures between different robots and inside the same robot are adequately detected, and so the trajectories are well merged.

Traditional indicators, such as average translational error (ATE) and average rotational error (ARE), can not demonstrate the performance of trajectory merging in DSLAM. Because these traditional indicators simply compare the calculated trajectory with the groundtruth to calculate the error, the comparison can not well reflect the topology and semantic information. There is only one intersection in the shadow area in Fig. 9(e), yet many roads appeared in the merged result. However, because the size of the area is small, the error of the wrong path is also small compared with the groundtruth, so that the result in Fig. 9(e) seems well in the traditional indicators (ATE and ARE).

We propose a new metric called loop-closure recall rate (LCR) to evaluate the DSLAM system. LCR indicates the success rate of loop-closure detection on the merged trajectory, which can reflect the performance of trajectory merging. LCR is calculated by the following formula:

$$ LCR = \frac{\eta_{\text{merged trajectory}}}{\eta_{\text{groundtruth}}} $$

where η is the number of frame pairs with successful place recognition. In our experiments, when the Euclidean distance between one point and the other point on the trajectory is less than 6 meters, just like [12], we think that this is the place that has been reached before, that is, the location matches, forming a loop.

Fig. 10 shows that with the increase of the NetVLAD frequency, there is a downward trend on ATE and ARE. However, the ATE and ARE strongly depend on the loop-closure result, and a single accidentally detected loop-closure will dramatically change the trajectory. That’s why Fig. 9(e) performs better than Fig. 9(d) with a lower NetVLAD frequency.
frequency. The LCR can efficiently indicate the trajectory merging performance: as the NetVLAD frequency increases, the LCR curve also increases.

From Fig. 9, we can conclude that the NetVLAD frequency higher than \(\text{NetVLAD}/8\) frames reaches a similar high-performance level in different indicators. Continuous improvement of the NetVLAD frequency from \(\text{NetVLAD}/8\) frames has a limited effect on the final DSLAM performance. Our cross-component scheduling method can improve the NetVLAD frequency from \(\text{NetVLAD}/12\) frames to \(\text{NetVLAD}/8\) frames, and thus significantly evolve the DSLAM performance.

D. Run-Time with/without Cross-Component Scheduling

We evaluate our VO and NetVLAD implementation simultaneously on a Xilinx ZCU102 MPSoC platform [8]. There is an embedded Debian 9 (Stretch) operation system on the PS side (Processing System, CPU side). The drivers of the DPU and a popular middleware for robot ROS are also installed in the Debian 9 OS. The drivers take charge of communication between software and DPU. The PS operations, such as VLAD operations in NetVLAD and the FC layers in VO, are running over the ROS middleware. Table II shows the run time of each part of our DSLAM system.

Since the NetVLAD frequency (operate once NetVLAD for every \(N\) VO frames) before cross-component scheduling is constrained by Equation (8), NetVLAD can be calculated once every 12 VO frames. We divide the running time of the DSLAM into three threads: PL, VO on PS, NetVLAD on PS, and we calculate the running time of each part, which satisfies Equations (10) to (12) respectively. Then we find out that run-time of the NetVLAD on PS (\(T_{D_{PS}}\)) becomes the bottleneck of the DSLAM system and Equation (12) constrains the NetVLAD frequency (\(N\)) to 8.

The merged trajectory without cross-component scheduling is shown in Fig. 9(e) and the trajectory with our proposed cross-component scheduling method is shown in Fig. 9(c). The empirical results in Section IV-C show that our cross-component scheduling method can significantly improve the DSLAM accuracy.

<table>
<thead>
<tr>
<th>TABLE II</th>
<th>RUN TIME OF EACH PART IN OUR DSLAM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VO ((T_V))</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>13</td>
</tr>
<tr>
<td>Without Cross-Component</td>
<td></td>
</tr>
<tr>
<td>With Cross-Component</td>
<td></td>
</tr>
<tr>
<td>Constraint</td>
<td>(N \times T_f > T_D + N \times T_V)</td>
</tr>
<tr>
<td>(N) value</td>
<td>(N = 12)</td>
</tr>
</tbody>
</table>

* We use the NetVLAD method to do DPR in this paper.

V. CONCLUSION

Though DSLAM can benefit from CNN, the deployment of CNN on embedded FPGAs faces significant challenges. We propose a CNN-based monocular DSLAM system deployed on a Xilinx ZCU102 MPSoC platform, and a fixed-point fine-tune method to balance the accuracy and speed of CNN-based Visual Odometry on embedded FPGA. We also explore the impact of DPR frequency on DSLAM results, and propose a cross-component scheduling method to increase the operating frequency of NetVLAD to improve DSLAM performance. The CPU operations on NetVLAD limit the speed of the DSLAM system. In future work, accelerators for VLAD operations could be designed for higher performance.

ACKNOWLEDGMENT

This work is supported by Independent Research Program of Electronic Engineering Department of Tsinghua University (No.20182001483, 20192001419) and Meituan-Dianping Group and Beijing Sciences and Technology Project (No.20181100008918018).

REFERENCES