
An In-depth Comparison of Compilers for Deep
Neural Networks on Hardware

Yu Xing∗†‡§¶, Jian Weng†, Yushun Wang†, Lingzhi Sui†, Yi Shan†, Yu Wang∗‡§‖
∗Department of Electronic Engineering, Tsinghua University, Beijing, China

†Xilinx, Beijing, China
‡Beijing National Research Center for Information Science and Technology, Beijing, China

§Center for Intelligent Connected Vehicles and Transportation, Tsinghua University, Beijing, China
¶xingy16@mails.tsinghua.edu.cn ‖yu-wang@tsinghua.edu.cn

Abstract—Deep neural networks (DNNs) are currently the
foundation for many artificial intelligence tasks. The difficulty of
mapping NN models to high-performance hardware implementa-
tions arises from factors ranging from the computation complex-
ity of multiple operations to different hardware features such as
memory hierarchy and parallelism. In this article, we present a
generic compiler process flow and make an in-depth comparison
of compiler frameworks regarding their domain-specific language
(DSL), intermediate representations (IRs), optimization strategies
and autoscheduling methods. We reimplement typical NN models
based on these compiler frameworks and evaluate the resulting
performance. We also review our previous work(Deep Neural
Network Virtual Machine, DNNVM) on compiler frameworks
and optimization for a custom FPGA-based accelerator to gain
inspiration regarding the difference between compiler design for
general-purpose processors and that of FPGA-based accelerators.

Index Terms—Compiler, deep neural network, optimization

I. INTRODUCTION

The development of deep neural networks (DNNs) is driving
an explosion in multiple artificial intelligence (AI) domains.
DNNs currently achieve state-of-the-art performance in multi-
ple AI applications, such as computer vision, robotics and nat-
ural language processing. To date, many well-designed, high-
performance machine learning systems such as TensorFlow[1],
Caffe[2], and PyTorch[3] exist and allow programmers to
experiment with various DNN algorithms in a quick and
elegant way.

Nevertheless, the appealing accuracy and ability of DNN
comes at the cost of high computational complexity. In
general, most implementations of DNNs are based on ex-
isting general-purpose computation engines, especially CPU
and GPU platforms. When applications identify the needs
for custom computation, improved efficiency in computation,
lower power consumption/design cost, or physical system size,
it is a tedious task to optimize the source code of algorithms
targeting CPUs and GPUs. In recent years, there has been a
significant trend in designing specialized processing units such
as FPGA-based accelerators[4], [5] or ASICs[6], [7] to meet
these aggressive platform requirements and accelerate DNNs.
Despite the advantages of custom platforms, the intricacy of
design flows remains a barrier to the adoption of custom
accelerators.

To transform each segment of applications to an optimized
version of implementation, compilers have been used for

several decades[8]. Benefiting from the mature economy in-
volving CPUs and GPUs, compilers are capable of generating
platform-dependent code efficiently from high-level program-
ming languages, while optimized implementations of DNNs
are provided by linear algebra acceleration libraries such as
Eigen[9], MKL[10] and OpenBLAS[11]. In addition, in the
design of custom accelerators, computer-aided tools play a
key role in mapping different DNNs into hardware blocks and
generating efficient instructions executed by platforms.

Unfortunately, neural networks are computationally inten-
sive and involve latency-critical tasks. It is a tedious process
for users to write algorithms to fit the linear algebra acceler-
ation libraries. It is also very hard for existing compilers to
integrate newly introduced optimization methods to keep up
with the pace of the rapid development of algorithms; they
cannot readily provide a sufficient acceleration rate to bridge
the gap between the written algorithms and target hardware.
Building on these considerations, to improve the throughput
of devices and enhance productivity, several compiler-inspired
frameworks have appeared in recent years that intelligently
simplify the realization of optimized neural network perfor-
mance. In this paper, we leverage an in-depth comparison of
the processing flow of these compiler frameworks and provide
an analysis of their optimization methods. We also perform ex-
tensive experiments using several mainstream neural networks
and present our practical experience. For this purpose, we
use best-effort reimplementations based on the original papers
and tutorials. Our main contributions can be summarized as
follows:

• We present a generic compiler process flow and explain
the challenges of compilers for deep neural networks on
hardware.

• We analyze the difference of optimization strategies used
in existing compiler frameworks[4], [5], [12]–[19].

• We fairly and empirically evaluate these compilers, tar-
geting general-purpose processors (GPPs) or specialized
accelerators on frequently used neural networks. We
highlight the difference between the achieved throughput
of GPPs and custom accelerators.

To the best of our knowledge, this paper is the first study to
compare newly designed compilers for deep neural networks.
The remainder of this paper is organized as follows. Section

978-1-7281-2437-7/19/$31.00 c© 2019 IEEE

2

Fig. 1: Generic Compiler Frameworks for Deep Neural Networks

2 reviews the challenges and universal processing flow of
compiler frameworks for DNNs. Section 3 presents the details
of existing compilers and the difference between them. We
introduce our experimental environments in Section 5 and
present the analysis and results of the evaluation. Section 6
summarizes and concludes the paper.

II. COMPILER OPTIMIZATION CONCEPT

A. Generic Compiler Frameworks for Deep Neural Networks

Compiler frameworks for deep neural networks work in the
context of high-level DNN specifications, especially models
from deep learning frameworks such as Caffe[2], Tensor-
Flow[1], MXNet[20], and PyTorch[3]. The optimization steps
are applied at different stages of the compilation process,
and the processing flow of these compiler frameworks can
be categorized into five layers: 1) front end, 2) intermediate
representation (IR), 3) high-level optimization, 4) low-level
optimization and 5) back end.

First, front ends transform high-level specifications of deep
neural networks into compiler-specific IRs. These IRs are
usually in the form of directed acyclic graphs[1], [3], in
which each node represents a computation operation and each
edge denotes the data dependency between operations. As
a result, graph-level algorithms[13], [19] can be used upon
these IRs to fuse operations and optimize data layouts. Apart
from the high-level IRs, multiple extensive IRs[21]–[24] are
adopted in the optimization process of compilers. Deep neural
network workloads can be decomposed into tensor operations,
such as matrix-vector and matrix-matrix multiplication. Low-
level optimization methods[12], [13] are used to optimize the
schedule for enhancing data locality and making full utilization
of the parallelism of hardware platforms. This problem turns
into what optimization to use and which parameters to choose
from (e.g., tiling size, fusion strategies, and vectorization).
Hundreds of low-level optimization steps may be applied
during the compilation phases. Finally, the back end[24], [25]
is responsible for mapping optimized implementations into
machine-dependent executable instructions.

B. Challenges

1) Intermediate Representations (IRs): Well-known deep
learning frameworks offer high-level abstraction for deep
neural networks expressed as a computing graph. TensorFlow
employs a static dataflow graph of operators and offers highly
optimized implementations, in which GPUs and other spe-
cialized accelerators are transparent to the users. However, a
static computing graph cannot support computations that are
not explicitly specified. For example, the size of the input

and output needs to be specified, and all required data should
be loaded on-chip before execution of an operation. Dynamic
frameworks such as PyTorch and Chainer adopt a define-by-
run computing graph to alleviate this problem, but the control
flow is lost due to the dynamic computing graphs.

In addition, these deep learning frameworks lack efficiency
in the instances where researchers need to develop a custom
operator. Hundreds of lines of codes need to be written man-
ually to express the algorithm. The computing graphs in these
frameworks lack features and information from the hardware
as well. The computation efficiency decreases dramatically
when the operators do not fit the preoptimized version of
the library functions. At the very least, we need to make
O(Nf ·Np) efforts to optimize operations in Nf deep learning
frameworks targeting Np hardware platforms.

To solve these problems, an effective design mentality is to
decouple the algorithm description with deep learning frame-
works and hardware platforms. IRs should not only provide
concise, portable and expressive syntax to represent the NN
models and control flow but also provide a powerful abstrac-
tion containing both the features of algorithms and hardware
platforms for the following analysis and optimizations.

2) Scheduling Pipelines: Given the expression of algo-
rithms, schedulers contain the rules to map computation
descriptions to implementations for different hardware plat-
forms. Preoptimized libraries such as Eigen[9] and cuDNN[25]
provide various reliable and fast implementations for linear
algebra, but these libraries lack optimization across operators,
and the execution of each operation varies dramatically for
different data sizes, data layouts, configurations for operators,
memory hierarchies and specific hardware features. Determin-
ing when the functions should be computed, where the data
should be stored, and how long they should be cached, in
addition to configuring the trade-off between recomputation
and data locality, are the main challenges for the scheduler.
The combination of fusion and tiling are the most common
methods to enhance producer-consumer locality and make full
utilization of parallelism, but the optimization space is too
large to be explored.

3) Autotuning: Let the optimization sequence of the sched-
uler in a compiler contain n optimization passes. If we
focus on whether to apply the optimization, then we have 2n

optimization options to select from. Furthermore, if each opti-
mization pass has a many-choice option with m variants, then
the total optimization space becomes

∏n
i=0 mi. If we take the

ordering of optimization steps into account, the optimization
search possibilities become n! due to the permutations. Hence,
difficulties often arise from the combinatorial explosion of
optimization choices. If all optimization steps and scheduling

3

are manually specified, it would incur a high engineering cost
to achieve an ideal performance even for the most experienced
engineers. Autotuning refers to a methodology incorporating
a model with which users can traverse the entire optimization
space efficiently. For autotuning, it is challenging to develop
an approach that is able to traverse all potentially profitable
optimization choices incorporating a precise execution cost
with finite time complexity.

4) Back Ends and Code Generation: The back end is
responsible for emitting machine code for the optimized
implementations. In general, the IRs and programs are trans-
formed into LLVM[24] or CUDA[25]/OpenCL[26] source
code. Unfortunately, several patterns of the implementations
may generate poor code when passed directly to LLVM.
Additionally, due to the custom instruction set architectures
for specialized accelerators, back ends for custom accelerators
need to be designed explicitly from scratch. In some extreme
cases, the end implementations might not target an individual
CPU or GPU kernel, and the hybrid execution of CPU/G-
PU/FPGA/ASIC platforms introduces new challenges. A small
change in the implementation can affect the memory manage-
ment, communication between devices, synchronization and
optimization choices.

III. IMPLEMENTATIONS OF COMPILER FRAMEWORKS

In this section, we analyze 4 full-stack compiler frameworks
for deep neural networks to generate optimized implementa-
tions on CPUs and GPUs. We focus on the domain-specific
representations, high-level transformations and data scheduling
optimization. In addition, we present 5 compiler architectures
for specialized FPGA-based accelerators. Other compilers,
such as Intel’s nGraph[27] and TensorFlow XLA[16], are still
experimental and in active development, and we do not discuss
them in this paper. There is not much literature or source code
for compilers targeting ASICs such as TPU[7] or Diannao[28]
for reference, so we do not include them either.

A. Halide

The Halide compiler[12] was originally designed for image
processing, and neural networks have many similarities with
image processing. They are both composed of a long compu-
tation sequence of many operations, and they both combine
the challenges of stencil computation and stream programs.
Thousands of lines of code for the optimized pipeline must
be written manually in C, CUDA or assembly for each
complex operation to achieve the peak performance, even by
an experienced engineer. The optimized pipeline cannot be
ported to other architectures. In consideration of these aspects,
Halide applies high-level abstraction and efficient schedule
methods to improve portability and composability.

1) Domain-specific Language (DSL) and Representations:
Halide‘s DSL decouples the algorithm definition from the
execution strategy. Instead of providing specific values to
describe a function, algorithms are defined as pure functions
over an infinite integer domain. The DSL avoids higher-
order functions, dynamic recursion and complex data structure.
To express operations such as convolution and pooling in
neural networks, a recursive reduction function is applied by

defining the minimum and maximum value for the targeting
dimension. The scheduling representations provide efficient
descriptions for the implementations of parallel, vectorized,
tiled, fused and reordered functions. Halides DSL is simpler
than most functional languages and is sufficient to describe
most operations and scheduling methods for neural networks.

Listing 1: Algorithm description of convolution written
manually in Halide DSL. By setting the potential range of
shapes of the input Buffer and V ariables, the
autoscheduler can search for valid CPU execution strategies
automatically.
1 / / Data a r e s t o r e d i n an on−c h i p b u f f e r .
2 I n p u t <Buf fe r <f l o a t >> i n p u t , wtB , b i a s ;
3 I n p u t <f l o a t > pad l , pad t , s t r i d e w , s t r i d e h ;
4 / / S e t t h e boundary c o n d i t i o n f o r f u n c t i o n s .
5 Func i n = B o u n d a r y C o n d i t i o n s : : c o n s t a n t e x t e r i o r (

i n p u t , 0) ;
6 Func in w = B o u n d a r y C o n d i t i o n s : : r e p e a t e d g e (wtB) ;
7 Func in b = B o u n d a r y C o n d i t i o n s : : r e p e a t e d g e (b i a s) ;
8 / / Pre−d e c l a r e t h e v a r i a b l e s and f u n c t i o n s .
9 Var w, h , c , oc , kw , kh ;

10 Func fw , fh , conv2d , convsum ;
11 / / A lgo r i t hm d e s c r i p t i o n o f c o n v o l u t i o n .
12 fw (w) = w∗ s t r i d e w − p a d l ;
13 fh (h) = h∗ s t r i d e h − p a d t ;
14 RDom k e r n e l (0 , wtB . wid th () , 0 , wtB . h e i g h t ()) ;
15 conv2d (w, h , c , oc) += i n (fw (w) + k e r n e l . x , fh (h) + k e r n e l

. y , c) ∗ in w (k e r n e l . x , k e r n e l . y , c , oc) ;
16 / / R e d u c t i o n o f t h e d imens ion of t h e c h a n n e l .
17 RDom c h a n n e l (0 , i n p u t . c h a n n e l s ()) ;
18 convsum (w, h , oc) += conv2d (w, h , channe l , oc) ;
19 / / Add t h e b i a s .
20 o u t p u t (w, h , oc) = convsum (w, h , oc) + in b (oc) ;
21 / / S e t b o u n d s e s t i m a t e f o r pre−d e f i n e d b u f f e r s .
22 / / H a l i d e o p t i m i z e s t h e s c h e d u l e unde r such

c o n s t r a i n t s .
23 i n p u t . dim (i) . s e t b o u n d s e s t i m a t e (0 , v a l u e { i }) ; . . .
24 o u t p u t . e s t i m a t e (w, 0 , 1 6) . e s t i m a t e (h , 0 , 1 6) . e s t i m a t e (

oc , 0 , 4 0 9 6) ;

2) Autoscheduler: At the very beginning, the optimization
in Halide is semiautomatic, and the schedule is specified by
the user. The schedule search space in Halide is enormous due
to the combination of choices of marking the implementations
of loop parallel, reorder, vectorized or unrolled, caching be-
haviors and hybrid code generation for various devices. The
primary autotuner[12] in Halide applies stochastic search and
genetic algorithms to optimize schedulers for pipelines. It
starts from seeding potentially profitable schedules to initial
populations of a fixed size (128) and constructs a new gener-
ation with crossover elitism, mutated and random individuals.
In recent work, Mullapudi et al. proposed a model-driven
autoscheduler[29] for Halide. The heuristic autoscheduler first
determines the best tile size for each group to maximize input
data reuse. Then, the scheduler enumerates all valid grouping
opportunities with a direct producer-consumer relationship to
reduce memory communications. However, different tile sizes
for the grouping operations introduce additional recomputa-
tion, so the authors set some rules for candidate tiling: 1) the
minimum of the innermost dimension of tiling should be more
than VECTOR_WIDTH so that the loop nests can be efficiently
vectorized, 2) the number of tiles should be larger than the
number of CPU cores to enhance parallelism, and 3) the mem-
ory footprint is dependent on the last-level CACHE_SIZE.
Then, the autoscheduler provides a cost function to estimate

4

the performance improvement of grouping and tiling by adding
the arithmetic cost of implementations ARITH_COST to the
total number of loads LOAD_COST. The performance benefit
of inlining a function to consumers is also considered by the
scheduler. Finally, the autotuner selects the optimal schedule
strategies with the minimal cost.

3) Portability to Different Architectures: The Halide
autoscheduler provides the ability to generate an opti-
mized pipeline targeting various hardware architectures.
By altering the values of PARALLELISM_THRESHOLD,
VECTOR_WIDTH, CACHE_SIZE and LOAD_COST as men-
tioned above, the autoscheduler can be adapted to CPUs
such as the Xeon and ARM CPUs. Alone, the autoscheduler
can generate schedules for GPUs in a similar way, and
the number of threads per GPU thread block is constrained
by MAX_THREADS_PER_BLOCK to avoid generating invalid
strategies.

B. TVM

TVM is an end-to-end full-stack compiler framework that
maps high-level specifications of deep neural networks from
multiple deep learning frameworks to low-level optimized
code for a diverse set of hardware back ends. In recent months,
TVM has become a community that attracts many developers
to optimize their models based on TVM stacks.

1) Relay[22]: Relay is the front end of TVM. The com-
puting graphs in TensorFlow are static graphs with a fixed
topology. It is easy to optimize each operation, but users can
construct their own operations only in a deeply embedded
DSL. Dynamic computing graphs as adopted by PyTorch and
Chainer[30] provide the convenience to describe the operators,
but it would be very hard to leverage optimization across the
operation and hardware platforms. As a result, Relay presents
a new high-level IR to provide expressiveness and efficient
compilation from the perspective of a programming language
instead of the previous dataflow representations.

2) Graph-level Optimization: Graph-level optimization of
the computing graphs of deep neural networks has been
demonstrated to be effective by many off-the-shelf tools[31].
TVM focuses on operation fusion and data layout transforma-
tion. Operator fusion in TVM combines adjacent operators:
1) those that can be precomputed, 2) reduction functions,
and 3) pointwise operations to reduce data transfer between
the on-chip buffer and off-chip memory. Data layout can be
converted for better execution on the target hardware. Based
on TVM, Amazon[32] has presented a new data layout method
to accelerate an NN on a CPU.

3) Automating Operator-level Optimization: Unlike the
high-level representations, optimized implementations of each
operator are opaque to users. Internally, TVM reuses helpful
schedule primitives in Halide and extends the primitives to
optimize the GPU and specialized accelerator performance.
For example, TVM provides schedule primitives that assign
data into the shared memory in GPU so that groups of threads
can fetch the data they need cooperatively. Additionally, TVM
decouples the schedule primitives with the hardware intrinsi-
cally, so the compiler is capable of matching schedule patterns
with hardware implementations.

Given the schedule primitives, users could leverage op-
timization for scheduling either manually or based on the
experience provided by TVM developers. Such an approach is
inefficient, so the remaining problem is to find an automatic
method for scheduling optimization. By comparing random
search and blackbox genetic algorithms, which are similar
to the methods in the previous edition of Halide with ML-
based models[33], [34], users can find an ML-based model:
a gradient tree boosting model that provides high speedup
quality and requires little training cost.

4) Hybrid Execution: TVM supports multiple types of
hardware platforms, including a server-class CPU/GPU and an
embedded-class CPU/GPU. In particular, the TVM group pro-
vides a codesign of the hardware and software tool VTA[35],
which can generate hardware architecture based on FPGA
through high-level synthesis (HLS) and generate hybrid im-
plementations for both the ARM CPU and FPGA.

C. DLVM

The IR in DLVM is a graph-based, modular representation
that has a set of hierarchy of abstractions, including mod-
ule, function, basic block and instruction. In particular, each
module contains type definitions and functions, each function
contains a control flow graph formed by basic blocks, and each
basic block contains instructions with data dependencies in
the form of a DAG. The virtual instructions in DLVM include
basic fine-grained math operators, which can be categorized
into 1) elementwise operators such as add and tanh and 2)
complex operators such as dot and convolve. Optimization
steps in DLVM include algebra simplification, linear algebra
fusion, matrix multiplication reordering and some traditional
compiler optimization steps. Ultimately, DLVM IR exists at a
lower level than implementations of BLAS and computation
kernels of LLVM for code generation.

D. Tensor Comprehension (TC)

On GPUs, the achieved performance of parallel execution of
operations through the preoptimized library functions depends
on the data size, data layout and various hardware features
of the GPUs. However, creating a library that covers all
transformations and optimizations for a combination of these
features and leverages optimizations across operators is fea-
sible. All scheduling transformations of algorithms for GPUs
should be written manually in Halide. More recent deep neural
network compilers such as XLA and Latte[36] cannot readily
achieve the ideal throughput even though they take the data
size and cross-layer optimization into consideration. Building
on these considerations, TC presents an expressive DSL that
can efficiently describe the algorithms. Based on the DSL,
the compilation flow maps the high-level representation into
the polyhedral model to explore scheduling of the optimization
space and generates highly optimized GPU code automatically.

1) High-level Representations and DSL: Instead of design-
ing an embedded DLS such as Halide (embedded in C++),
TC avoids a verbose process when addressing debugging
and warnings of the embedded DSL. The presentation of
computing and multiarrays in TC is inspired by OoLaLa[37],
TACO[38] and Einstein notation[39], which prevents users

5

from predeclaring variables and functions, simplifies the re-
duction operations and eliminates the influence of evaluation
sequence of points on the output. To integrate TC into deep
learning frameworks, they provide APIs to transform the NN
model from deep learning frameworks into TC. A single
TC corresponds to a node in the computing graph in the
ML framework. When adding a new operator, users can
write their own TC implementation instead of using back-end
implementation.

Listing 2: Algorithm description of convolution written
manually in TC DSL. The autotuner in TC traverses
scheduling opportunities based on hardware features and
leverages a generic algorithm to find the optimal execution
strategies.
1 / / No p r e d e c l a r a t i o n o f v a r i a b l e s l i k e B , C ,H or W
2 d e f c o n v r e l u (f l o a t (B , C , H,W) I n p u t , f l o a t (CO, C ,KH,KW

) Weights , f l o a t (CO) Bias , f l o a t (1) kernel w ,
f l o a t (1) k e r n e l h)−>(Outpu t) : {

3 / / I n d i c e s t h a t a p p e a r on t h e r i g h t b u t n o t on t h e
l e f t a r e assumed t o be r e d u c e d d i m e n s i o n s .

4 Outpu t (b , co , h ,w) += I n p u t (b , r c , h∗ s t r i d e h [0] + r kh ,
w∗ s t r i d e w [0] + r kw) ∗ Weights (co , r c , r kh , r kw)

5 Outpu t (b , co , h ,w) = fmax (0 . 0 , Outpu t (b , co , h ,w) + Bia s (
co)) }

6 / / TC a u t o t u n e s t h e s c h e d u l e s t r a t e g i e s f o r a
s p e c i f i c shape o f t h e d a t a each t ime .

7 H,W, C , B , F , CO,KH,KW = 2 2 4 , 2 2 4 , 3 , 1 , 3 2 , 3 , 3
8 t c . a u t o t u n e a n d c o m p i l e (c o n v r e l u , i n p u t , we igh t s ,

b i a s , t u n e r c o n f i g)

2) Polyhedral Compilation: Halide explores the interaction
of grouping and slicing based on Halide IR to optimize the
scheduling[29]; more recent work[40] presents a fusion model
with potentially profitable fusion strategies that are not covered
by the previous Halide approach. Instead, the TC compiler
transforms the TC representations into Halide IR and then
lowers Halides IR into a polyhedral IR. This process is realized
by PENCIL[41] and pet libraries, but the PENCIL IR is
ultimately bypassed to bridge the mismatch between high-level
operations and polyhedral code. The core polyhedral schedul-
ing in TC is provided by isl[42], and a data dependency
graph is generated internally by analyzing the algorithm and
loops. A combination of affine transformations such as tiling,
mapping, shifting, fusion, distribution and interchange upon
the loops without changing the data dependency exposes more
opportunities for scheduling optimization. TC extends the isl
by providing more fine-grained control, and additional custom
constraints can be inserted into the program. All affine maps
can be integrated into a schedule tree, and the schedule tree
can be used to present loop tiling, mapping to blocks and
threads, and mapping tensors into shared or private memory
and registers. The mapping algorithms are borrowed from
PPCG[43], but more complex scheduling methods and opti-
mization opportunities regarding imperfectly nested structures
are taken into consideration by TC.

3) Autotuning Methods: In Halide, the value of the data
size is not specified, and the algorithm is described over
an infinite integer domain. However, in TC, the generated
code depends on the specific input shapes and other options
such as hardware features, including the shared memory size
and register size. After setting these options as an entry key,

Fig. 2: Generic Compiler Frameworks for FPGA-based
Accelerators

the autotuner in TC sets up candidate configurations about
the tile size, block mapping, fusion strategies and shared
memory usage randomly, and then each tuning is compiled
and profiled on the GPUs. After obtaining the implementation
costs of each tuning, TC leverages a genetic search to find
the optimal execution strategy. Finally, the compilation cache
stores the generated CUDA code, which holds the fastest
known implementations for each entry key to enable reuse.

E. Overview of fpgaConvNet, DNNWeaver, DLA[18], xfDNN,
and DNNVM

In Figure.2, the function of compilers for the FPGA-based
specialized accelerators can be divided into two categories,
which are to map neural networks into 1) hardware blocks[4],
[5], [18] and 2) instructions executed on hardware[17]–[19].

The compiler framework of fpgaConvNet is based on the
synchronous dataflow (SDF) paradigm graph[44], which is
able to obtain a predictable amount of required on-chip
memory and provide a static execution strategy. By analyzing
the interaction between the DAG of the DNN model and the
platform-specific resource constraints, the compiler transforms
the computing graph into an SDF hardware IR, in which each
node represents a hardware block. The compiler tiles the DNN
model into segments and generates an optimized hardware
block for each subgraph separately. DNNWeavers compiler
adopts a dataflow graph generated from Caffe. When given
a specific NN model, DNNWeaver leverages an automatic
resource optimization algorithm to maximize the performance
by varying 1) the number of PEs per PU and 2) the output
slice. Additionally, DNNWeaver provides a custom ISA to
decouple accelerators with different FPGA platforms.

DLA presents a compiler and FPGA overlay for deep neural
network acceleration. On the hardware side, DLA proposes a
very long instruction word (VLIW) that introduces negligible
overhead. By continuously fetching the VLIW from external
memory, the VLIW is decomposed into segments and sent to
modular hardware kernels connected by Xbar. DLAs hardware
supports vectorized and parallel implementations. By changing
the parallelism in the width Q_VEC, height P_VEC, input
channel C_VEC, and output channel K_VEC dimensions,
the overlay achieves the optimal implementation efficiency.
On the software side, the DLA compiler slices the feature

