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Abstract—PM2.5 has already been a major pollutant in many
cities in China. It is a kind of harmful pollutant which may cause
several kinds of lung diseases. However, the existing methods to
monitor PM2.5 with high accuracy are too expensive to popular-
ize. The high cost also limits the further researches about PM2.5.
This paper implements a method to estimate PM2.5 with low cost
and high accuracy by Artificial Neural Network (ANN) technique
using other pollutants and meteorological factors that are easy
to be monitored. An Entropy Maximization step is proposed to
avoid the over-fitting related to the data distribution of pollutant
data. Also, how to choose the input attributes is abstracted to an
optimization problem. An iterative greedy algorithm is proposed
to solve it, which reduces the cost and increases the estimation
accuracy at the same time. The experiment shows that the linear
correlation coefficient between the estimated value and real value
is 0.9488. Our model can also classify PM2.5 levels with a high
accuracy. Additionally, the trade-off between accuracy and cost is
investigated according to the price and error rate of each sensor.

I. INTRODUCTION

Nowadays, the high frequency of hazy weather in many

cities in China has made the particles with aerodynamic

diameter less than 2.5 micrometer (PM2.5) attract more and

more attention. PM2.5 can attach many kinds of poisonous

chemicals and impact human health, which may cause many

diseases such as asthma and chronic obstructive pulmonary

disease (COPD) [1]. As a result, many citizens urgently

want to know the PM2.5 quality in their living and working

environment.

However, the existing methods to accurately monitor PM2.5

require the support from a high-cost and complicated system,

which makes it difficult to measure PM2.5 without a special-

ized monitor station [2]. It can be seen from Table I that all

these highly accurate equipments need a high cost that most

citizens and researchers cannot afford these equipments. As a

result, monitoring PM2.5 is far from universal, and the lack

of data blocks the progress of researching and controlling of

PM2.5. Also, the high cost also leads to difficulties to analyse

the PM2.5 problem under a specific environment, such as the

in-door PM2.5 [3].

In order to reduce the cost of monitoring PM2.5, some

researchers use low-cost methods such as ANN technique to

estimate PM2.5 recently [4]–[6]. The ANN technique attempts

to use data that are easy to be sensed to calculate PM2.5.

Nevertheless, PM2.5 has complex causes and can be influenced

by too many factors compared with other molecular pollutants

such as O3 [7]. The estimation accuracy is low when directly

using ANN, or the cost goes high again after many kinds

of expensive data are used. Given this situation, we find two
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Fig. 1. IAQI of PM2.5 over a mounth

TABLE I
COST AND METHOD OF EQUIPMENTS TO MONITOR PM2.5

Method Cost Principle
TEOM 1405 22,000$ TEOM Gravimentric
BAM-1020 23,000$ Beta-ray

TSI DUSTTRAJ II 80,000CNY Photometric
Dylos DC1700 425$ Particle counter

major problems that limit the estimation accuracy of ANN

model and choose specific algorithms to solve them.

The first problem is the estimation error caused by the

different distributions of data over different data sets. As is

shown in Fig. 1, the Individual Air Quality Index (IAQI)

of PM2.5 is more likely to take a low value and only has

little chance to take a high value. However, it is just the

data over the boundary of Heavily Polluted range in Fig. 1

that contain important information. As a result, the important

data may be ignored or only have little weights in training

phase due to the small amount. This is a kind of over-fitting

phenomenon which leads to a high error rate in the key range,

so the trained model is inefficient when the situation of the

TestingDataset is different from the TrainingDataset, for

example, the heavily polluted weeks. This paper proposes an

Entropy Maximization operation before training phase to

emphasize the important data, which can avoid the over-fitting

related to the data distribution and thus improve the estimation

accuracy.

Second, the redundant input attributes lead to unnecessary

cost and may bring noise to reduce the estimation accuracy. An

attribute refers to a kind of data, for example, the WindSpeed.

Considering that some meteorological data have an aggre-

gation characteristic over seasons, using the irrelevant input

attributes may also cause over-fitting. In fact, the problem
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can be regarded as an optimization problem whose target is

estimation accuracy. This paper proposes an iterative greedy

algorithm to find the better input attributes step by step.

The contributions of this work are as follows:

1) We propose an oriental low-cost method to estimate

PM2.5 based on ANN technique using the meteorologi-

cal data and other pollutants. The result shows that the

linear correlation coefficient R between estimated value

and real value is 0.9488. The model can also be used to

classify the IAQI levels of PM2.5 with a high accuracy.

2) We propose an Entropy Maximization step before

training to normalize the distribution of data. We use

information theory to analyse the problem and to provide

theoretical supports for proposed algorithm. The result

shows that using Entropy Maximization can make

R2 of TestingDataset increase near 0.1 while R2 of

TrainingDataset decreases. So this proposed algorith-

m can avoid over-fitting related to the data distribution.

3) We abstract the problem of choosing input attributes

as an optimization problem and propose an iterative

greedy algorithm to solve it. The proposed greedy

algorithm find that the WindSpeed is an redundant

attribute whose information is contained by others. That

is, estimating PM2.5 without WindSpeed can increase

R2.

4) We create a fit curve to show the relationship between

cost and estimation accuracy of the proposed model

according to the price and error rate of each sensor.

This curve can help user to make better decision about

the input attributes in order to further reduce the cost

under specific accuracy demand.

The rest of this paper is organized as follows: Section II

provides related background information and related work.

Section III introduces our proposed method. The results and

discussions are shown in Section IV and Section V summa-

rizes this work.

II. PRELIMINARIES AND RELATED WORK

A. Data

According to the “Technical Regulation on Ambient Air

Quality Index (AQI)” in China [8], there are six major

pollutants that influence air quality, namely, CO, SO2, NO2,

O3, PM10 and PM2.5. Considering that the other five pollutants

are easy to be monitored except PM2.5 [9]–[11], this paper

uses the data of these five pollutants to estimate the IAQI of

PM2.5. IAQI is a dimensionless index ranging from 0 to 500

that describes the air quality status of individual pollutant.

And the monitoring stations in Beijing provide IAQI value as

a convincible high accurate data. The data of other pollutants

used in this paper are the concentration of CO, and the IAQI

of SO2, NO2, O3 and PM10. In addition, AQI is the maximum

value of IAQI values of the six major pollutants above, and

the air quality is divided into six levels according to AQI in

order to reflect the quality more clearly, as is shown in Table

II. In this paper, we use the similar level definition to classify

IAQI of PM2.5. Although the data used in this paper is from

monitoring stations in Beijing and the numerical results may

be regional, the proposed algorithms can be adopted by other

cities.

TABLE II
LEVELS OF AIR QUALITY

Level AQI range Air Quality
1 0-50 Good
2 51-100 Moderate
3 101-150 Lightly Polluted
4 151-200 Moderately Polluted
5 201-300 Heavily Polluted
6 301-500 Severely Polluted

B. Related Work

Data mining techniques are widely used in many fields of

meteorology because of their advantages such as the ability

to handle big data. For example, ANN is used to estimate or

predict the concentration of vehicle emission [12] and other

pollutants [13], or the whole air quality [14]. However, all

the researches above only use no more than two factors to

estimate or to predict. Considering that PM2.5 has a complex

relationship with many factors unlike these molecular pollu-

tants [7], the too few input attributes lead to a low estimation

accuracy when dealing with PM2.5 .

Zheng uses ANN to estimate PM2.5 [4], but the data set

Zheng used only has 34 data items, so the data volume is too

small to show the validity. Yao also uses ANN to estimate

PM2.5 [5], and the linear coefficient result R2 is only 0.6556,

which is not a high estimation accuracy. Also, none of these

two related work consider the cost of their methods. In [6],

the researchers estimate the PM2.5 data of each place in the

whole city using the PM2.5 data from monitor stations and

other data about the roads, facilities and human mobilities in

the city. This work solves the PM2.5 monitoring problem from

another perspective compared with our work, so in future we

can combine our method with their work to further improve

the effect.

III. PROPOSED METHOD

Our estimation method is shown in Fig. 2. We first pre-

process the data to reduce the error caused by sensor noise

or network failure. An Entropy Maximization operation is

done before training to normalize the distribution and avoid

over-fitting. Also, a greedy algorithm is proposed to iteratively

find the better input attributes.

A. Preprocessing

Due to the fact that the pollutant data have a low sample

rate with high fluctuation, it is difficult to identify whether a

data item contains wrong point or not. Given this situation,

this paper uses specific method to eliminate wrong points.

A element is considered as a wrong point when its value

fluctuate fiercely while the others are stable. Nevertheless, the

data cleaning approach above produces many blank elements

in the data set. As for ANN, the number of input attributes

can’t be changed in a certain system. Therefore, we use liner

interpolation method to fill up the blank elements.

The reconstruction error of liner interpolation is small

enough compared with the large amount of data. Also, liner

interpolation is easy to be implemented and can be computed

at high speed, which meets the need of our system.
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Fig. 2. Our accurate and low-cost PM2.5 estimation method framework

B. Entropy Maximization

It is always just the rare data values that contain some

important information, such as the heavy pollution shown

in Fig. 1. So the important data may be ignored or only

have little weights in training phase. As a result, the trained

model may have a larger error rate in the key part, which

is caused by the over-fitting related to the data distribution.

As for the whole data set, it is impossible to guarantee that

the TrainingDataset has a same or approximate distribution

with any practical data set collected in future. So this over-

fitting phenomenon limits the estimation accuracy of the

trained model.

For example, as for our TrainingDataset that contains

6801 data items, there are 256 PM2.5 data whose value is

in the severely polluted range, namely, the range of values

larger than 300. So in the training phase, the severely polluted

data only has a little chance, nearly 3%, to train the model.

Therefore, the trained model may have a large error rate in

severely polluted range. And the estimation accuracy can be

very low when we use the trained model to estimate PM2.5

in severly polluted weeks whose PM2.5 values are all larger

than 300.

We consider that the inefficient result of the example above

is similar to an over-fitting phenomenon. This over-fitting

phenomenon is caused by the obviously different distributions

between TrainingDataset and TestingDataset. Therefore,

we want to normalize the distributions before training phase

to avoid over-fitting.

We find the relationship between distribution and infor-

mation can be explained by the concept of Information
Entropy in information theory, and some theorems can pro-

vide theoretical support for the normalization of distribution.

Given a discrete random distribution P = {p1, p2, ...pn} , the

entropy of the distribution P is defined by [15]:

H(P ) =

n∑
i=1

pi log(
1

pi
) (1)

where log( 1
pi
) is the individual information of a random

event that have a probability pi to occur. So the event with

lower probability to occur contains larger information, which

is similar to the information of data. The entropy of a random

variable with distribution P can reflect the information of the

variable itself, which is the weighted average of each value’s

information. The entropy of the random variable reaches a

maximum value when P equals to a uniform distribution, that

is [15]:

0 ≤ H(P ) ≤
n∑

i=1

1

n
log(n) = log(n) (2)

Considering the finite precision, the value of an input

attribute can also be regarded as a discrete random variable

when the data amount is large enough. So we can maximize

the entropy if we normalize the distribution of each attribute

into a uniform distribution or an approximately uniform distri-

bution according to Eq.(2), this normalization of distribution

is defined as Entropy Maximization step. After Entropy
Maximization, the information of each attribute can be fully

utilized to improve the effect of the model. And because the

distribution has been normalized, we can get a more general

model over different data distributions, which can avoid over-

fitting and further increase the estimation accuracy.

In order to implement the Entropy Maximization, this

paper uses the existing conclusion from probability theory

to normalize the distribution after the range normalization

step shown in Fig. 2. If we already have a prior distribution

knowledge of a random variable x whose distribution is p(x)
with range of interval [0, 1], we can normalize x into a random

variation y with uniform distribution using the function:

y = g(x) =

∫ x

0

p(x)dx (3)

Here we use the distribution of train data as the prior dis-

tribution, so the distribution can be normalized by Eq.(3).

This function is a monotonic non-decreasing function and is

not sensitive to noise. However, the Entropy Maximization
changes the definition of distance between different samples,

but ANN technique is not strictly based on a distance metric,

which makes the Entropy Maximization method suitable

for our method. The comparison between our method and

the experiment without Entropy Maximization is shown

in Section IV.D

C. Iterative Greedy Algorithm to Choose Input Attributes

Since we don’t know the inner relationship between input

attributes, the component of input attributes is difficult to

decide. If we use as more attributes as possible, not only the

cost can be relatively high, but also the estimation accuracy
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Algorithm 1: Greedy Algorithm to Choose Input At-

tributes
Input: OriginalInputAttributes, TrainingDataset,

V alidationDataset,NetworkParameters
Output: OptimalInputAttributes

1 flag ← true
2 CurrentAttributes ← OriginalInputAttributes
3 Initial the Network with NetworkParameters and number of
CurrentAttributes ;

4 Train the Network with TrainingDataset and
CurrentAttributes ;

5 Evaluate the result with V alidationDataset to get
CurrentAccuracy ;

6 while flag == true do
7 flag ← false
8 for input ← CurrentAttributes do
9 TempAttributes ← CurrentAttributes− input

10 Initial the Network with the number of
TempAttributes ;

11 Train the Network with TempAttributes ;
12 Evaluate the result to get accuracy ;
13 if accuracy > CurrentAccuracy then
14 save input → InputBuff
15 save accuracy → AccuracyBuff
16 flag ← true
17 end
18 end
19 input ← arcmax(accuracy)
20 CurrentAttributes ← CurrentAttributes− input
21 end
22 OptimalInputAttributes ← CurrentAttributes

may decrease. The redundant attribute may introduce noise

into the model and cause over-fitting. There are two reasons.

First, the combination of some input attributes may already

contains the information of a redundant attribute. Second,

some attributes may have little relationship with PM2.5, so

introducing the irrelevant attributes may establish an incorrect

causality.

In fact, the choice of suitable input attributes can be

regarded as an optimization problem. The adjustable parameter

is the kinds of input attributes, and the optimization target is

estimation accuracy of final model. We propose an iterative

greedy algorithm to solve the optimization problem and find

the most suitable input attributes. The steps of the proposed

algorithm is shown in Algorithm 1.

In the proposed greedy algorithm, we delete each input

attribute in turn and test the estimation accuracy of the model

trained by other input attributes. We can find some attributes

from the testing result that when we delete them, the accuracy

increases on the contrary. We greedily eliminate the attribute

that limits the accuracy most in each iteration and find the

better input attributes step by step. Additionally, we introduce

a V alidationDataset independent of TrainingDataset to

examine each subset’s accuracy. The V alidationDataset
is also independent of the final TestingDataset, so the

operation of choosing input attributes doesn’t lead to the over-

fitting result.

However, there is also a trade-off between cost and es-

timation accuracy. After deleting redundant and irrelevant

attributes, we can choose fewer input attributes for lower

cost but the accuracy decreases at the same time. In order

to determine which choice is better considering to both cost

and accuracy, we calculate the cost of different choices using

the price of sensors and then create a fit curve for decision.

More details are discussed in Section IV.D and Section IV.E.

D. Structure and Parameters of BP-ANN

We use Back Propagation Artificial Neural Network (BP-

ANN) to implement the estimation model, where the only one

output neuron calculates the PM2.5 result of an input data item.

If we want to regard our goal as a classification of PM2.5’s

IAQI levels instead of an estimation of PM2.5’s IAQI itself, we

only need to change the output layer of BP-ANN structure to

meet the classification demand. That is, considering that there

are six levels, the output layer should have six nodes, and each

node describe whether the PM2.5’s IAQI of current data item

is in the corresponding level.

There are also many parameters that need to be determined

before training phase such as the number of neurons in hidden

layer. We use the V alidationDataset mentioned before to

examine result of the parameter’s each value and choose the

value that can lead to the highest estimation accuracy.

IV. EXPERIMENT RESULTS AND DISCUSSIONS

In this section, we firstly introduce the evaluation criteria

and data set in our work. Then the final estimation and classi-

fication result is shown with the comparison of related work.

In order to illustrate the effect of our proposed algorithms,

we also give the result of different choices about structure

and input attributes. Finally, a fit curve reflecting the trade-off

between the cost and accuracy is provided.

A. Evaluation Criteria

Here we use three factors to show the relevance and

accuracy of different meaning, which can reflect the effect

of our method from different angles:

1) The linear correlation coefficient R between estimated

values and real values. Since the estimated values should

equal the real values ideally, namely, R = 1, R can

reflect the correlation between estimated values and real

values from a global scale. Also, R is an evaluation

criterion generally used in meteorology, which makes it

easy to compare our work with others.

2) The number and proportion of estimated IAQI values

classified in the same level with real value. Although the

level is defined on AQI, we can extend this definition to

IAQI to provide a visualized classification accuracy of

discrete meaning.

3) The number and proportion of estimated IAQI values

whose difference from the corresponding real value is

not larger than 50. Considering that the size of an IAQI

level′s range can be 50, 100 or 200, this evaluation

criterion can be regarded as a classification accuracy of

continuous meaning, which means the estimated value

does not deviate its real value more than an index size.

B. Data Set and Input Attributes

In this work, we use the data from 13 monitoring stations

in Beijing during 684 hours (about 4 weeks) to train the

network, and the V alidationDataset includes data of 329

hours (about 2 weeks). We use the data from 08 am 4/3/2014
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to 10 am 4/17/2014 during 323 hours to test our method.

The TestingDataset has total 3686 valid data items and

the TestingDataset is independent of TrainingDataset
and V alidationDataset. The initial data set has 9 at-

tributes including Temperature, Humidity, WindSpeed,

WindDirection, CO, SO2, NO2, O3 and PM10, and the

WindSpeed is recognized as a redundant factor which is not

used in the final model.

C. Estimation and Classification Result

The final result is shown in Fig. 3. Each point refers to

an estimation result whose x-coordinate is the real value and

y-coordinate is the estimated value calculated by ANN. The

linear correlation coefficient R of TestingDataset is 0.9488.

It can be seen from Fig. 3 that the points have an obvious

linear convergent feature, which means our method can reach

a great estimation result for data set with a large volume.

The comparison between our work and others is shown in

Table III. [16] uses ANN and principal component regression

to predict O3 , and [5] uses ANN to estimate PM2.5 . It can

be seen from Table III that our result achieves a better effect

and can handle a larger data set.

Particularly, [16] uses not only all the attributes in our

work but also some more attributes such as CH4, NMHC,

CO2, NO and solar radiation, which means a higher cost. [5]

uses another data set including Moderate Resolution Imaging

Spectroradiometer (MODIS) data and Meteorological data, so

the cost is difficult to be compared with our work.

We also calculate the two criteria reflecting the classification

accuracy of discrete and continuous meaning to evaluate our

method. As is shown in Fig. 3, the correct points under

continuous meaning are in the area between two dot lines.

There are 3323 correct results out of 3686 data items, which

means the classification accuracy reaches 90.34%. On the

other hand, the classification accuracy is only 68.91% under

discrete meaning. Lots of mistakes occur near the boundary

of an IAQI level because our training is not aimed at the

classification of IAQI level.

The application can also be regard as a classification

problem of IAQI levels. The data need to be discretized

into separate levels according to Table II. The transformation

may cause loss of information, so it is actually a weaken

TABLE III
COMPARISON WITH RELATED WORK

Work Pollutant Data Amount R2 with ANN
[16] O3 A Week 0.845
[5] PM2.5 5 days(< 200) 0.6556

Ours PM2.5 2 weeks(3686) 0.9002

TABLE IV
CLASSIFICATION RESULT

Number
Classification Level Recall

1 2 3 4 5 6 (%)

Real Level

1 977 78 0 0 0 0 93
2 160 719 176 135 4 0 60
3 0 124 403 156 0 0 59
4 0 1 41 352 144 0 65
5 0 0 0 6 180 2 96
6 0 0 0 0 3 25 89

Precision(%) 86 78 65 54 54 93 73

process of the problem and model. But the error rate near the

boundary between different levels is reduced, which makes it

more suitable for classification. The result of our classification

method is shown in Table IV. The final classification accuracy

increases to 72.80%, which is better than directly using the

estimation model to classify.

It can be seen from the result that our method can achieve

high accuracy no matter the problem is regard as an estimation

or a classification task.

D. Comparison with Other Choices

The comparison result between the final model and other

choices, including different input attributes, structures and

preprocessing methods, is shown in Table V.

TABLE V
RESULTS OF DIFFERENT STRUCTURE AND INPUT ATTRIBUTE CHOICES

No. Change TrainData TestData
- Final Model 0.9284 0.9002

1 With WindSpeed 0.9304 0.8991
2 Without CO 0.8788 0.8174
3 Without NO2 0.9344 0.8714
4 Without O3 0.8890 0.7661
5 Without PM10 0.8937 0.8811
6 Without SO2 0.9306 0.8971
7 Without Temperature 0.9103 0.8626
8 Without Humidity 0.8952 0.8702
9 Without WindDirect 0.9278 0.8995

10 500 Hidden Nodes 0.9306 0.8981
11 Linear Ouput Layer 0.8994 0.8634
12 Without Entropy Maximization 0.9396 0.8068
13 Considering Sensor Noise 0.8994 0.8691

After iterative training with the proposed greedy algorithm,

we find that the WindSpeed is a redundant attribute which

reduces the estimation accuracy. This result is contrary to

typical experience because HighWindSpeed that can blow

the pollutants away is usually considered a major cause of

great air quality. However, we have already used kinds of

pollutant data in the model, so the phenomenon that every

pollutant data has a low value already contains the information

of HighWindSpeed. So the WindSpeed attribute has no

more effect on PM2.5 but further brings noise into the model.

As a result, the accuracy increases when we use all other

attributes except WindSpeed to estimate PM2.5. The result

2C-2

194



0 200 400 600 800 1000 1200
0.6

0.65

0.7

0.75

0.8

0.85

Cost(CNY)

R
2

All Attributes

Without PM10

Without 
WindDirect

Without PM10 
and WindDirect

Without SO2
Without SO2 

and WindDirect

Without PM10, SO2 
and WindDirect

Without PM10, SO2,Temperature,Humidify, 
and WindDirect

Without O3, PM10, 
SO2 and WindDirect

Without NO2, PM10, 
SO2 and WindDirect

Without NO2, PM10, 
SO2, and WindDirect

Fig. 4. Relationship between cost and estimation accuracy of our method

of using WindSpeed is shown by comparison No.1 in Table

V. And the results of further eliminate another attribute from

the optimal input attributes are shown by comparison No.2 to

No.9.

We finally use 300 nodes in hidden layer and use sigmoid

function in both hidden layer and output layer, which can

better fit the multi-layer non-linear model according to the

examination results of V alidationDataset. The results of

using other structures of ANN are shown by comparison

No.10 and No.11 in Table V. In addition, it can be seen from

the comparison No.12 in Table V that without the Entropy
Maximization step, the result of TrainingDataset gets

better while the result of TestingDataset gets worse. The re-

sult means that the Entropy Maximization can avoid over-

fitting related to the data distribution in TrainingDataset
and make the final model more general to other data sets,

which matches our expectation.

E. The Cost-Accuracy Relationship

The estimation accuracy decreases when we use fewer at-

tributes than optimal input attributes, while the fewer attributes

can lead to lower cost on sensors. In order to further reduce

the cost when there is a specific estimation accuracy demand,

we create a fit curve to reflect the relationship between

cost and accuracy of our method according to the price of

each sensor, which is shown in Fig. 4. Each point refers

to a choice whose x-coordinate is the cost in Chinese Yuan

and y-coordinate is R2 reflecting the estimation accuracy. In

addition, we introduce the typical error rate of each sensor

into the experiment, so the linear correlation coefficient R
decreases compared with the ideal result. We use the Additive
White Gaussian Noise to simulate the error, which is

typical when analysing the noise of sensor [17]. The result of

noise considered situation is shown by the comparison No.13

in Table V.

V. CONCLUSION

This work implements an accurate and low-cost method to

estimate the concentration of PM2.5 based on ANN. We find

out two major problems that limit the estimation accuracy, and

propose specific algorithms to solve them. First, An Entropy
Maximization step is proposed to avoid the over-fitting

related to data distribution and can make R2 increase 0.1.

Second, we abstract choosing suitable input attributes as an

optimization problem and proposed a greedy algorithm to

solve it. The result shows that WindSpeed is a redundant

attribute and R2 can increase up to 0.9 after eliminating

WindSpeed. Additionally, in order to further reduce the cost,

we analyse the trade-off relationship between the cost and

accuracy using the price and error rate parameters of each

sensor. This relationship can help to choice suitable input

attributes with specific accuracy demand.

In the future, we will try to predict PM2.5 with our method.

And we want to find the relationship of PM2.5 among different

regions.
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