
Gibbon: Efficient Co-Exploration of NN Model and
Processing-In-Memory Architecture

Hanbo Sun*, Chenyu Wang*, Zhenhua Zhu, Xuefei Ning†

Guohao Dai, Huazhong Yang, Yu Wang†
Department of Electronic Engineering, BNRist, Tsinghua University, Beijing, China

Abstract—The memristor-based Processing-In-Memory (PIM)
architectures have shown great potential to boost the computing
energy efficiency of Neural Networks (NNs). Existing work
concentrates on hardware architecture design and algorithm-
hardware co-optimization, but neglects the non-negligible impact
of the correlation between NN models and PIM architectures.
To ensure high accuracy and energy efficiency, it is important
to co-design the NN model and PIM architecture. However,
on the one hand, the co-exploration space of NN model and
PIM architecture is extremely tremendous, making searching for
the optimal results difficult. On the other hand, during the co-
exploration process, PIM simulators pose a heavy computational
burden and runtime overhead for evaluation. To address these
problems, in this paper, we propose an efficient co-exploration
framework for the NN model and PIM architecture, named
Gibbon. In Gibbon, we propose an evolutionary search algorithm
with adaptive parameter priority, which focuses on subspace of
high priority parameters and alleviates the problem of vast co-
design space. Besides, we design a Recurrent Neural Network
(RNN) based predictor for accuracy and hardware performances.
It substitutes for a large part of the PIM simulator workload
and reduces the long simulation time. Experimental results show
that the proposed co-exploration framework can find better NN
models and PIM architectures than existing studies in only seven
GPU hours (8.4∼41.3× speedup). At the same time, Gibbon can
improve the accuracy of co-design results by 10.7% and reduce
the energy-delay-product by 6.48× compared with existing work.

I. INTRODUCTION

Deep Neural Networks (DNNs) have made breakthroughs
in many fields [1], [2]. However, the explosive parameters and
computations cause high energy consumption and long latency,
hindering the deployment and application of DNNs.

The memristor-based Processing-In-Memory (PIM) archi-
tectures have shown powerful capabilities in NN comput-
ing. PIM architectures can perform in-situ Matrix-Vector-
Multiplications (MVMs) and reduce the weight data move-
ments, improving the computing energy efficiency [3]–[6].

Existing PIM work mainly focuses on hardware architecture
design [3], [4] and algorithm-hardware co-optimization (e.g.,
pruning and quantization) [5], [6] for given NN models.
But these researches neglect the non-negligible impact of the
correlation between NN structure parameters (e.g., kernel size)
and PIM architecture design parameters (e.g., crossbar size)
on accuracy and hardware performance. For different network
structures, the corresponding optimal PIM architectures are
different and vice versa. For example, as shown in Figure 1,
when the network structure is fixed, different PIM architecture

*: Both authors contributed equally to this work.
†: Corresponding to foxdoraame@gmail.com, yu-wang@tsinghua.edu.cn

77.34% 82.03%79.69%

Different NN structures

D
iff
e
re
n
t
P
IM
a
rc
h
ite
ct
u
re
s

2.79 48.5511.66

Different NN structures

D
iff
e
re
n
t
P
IM
a
rc
h
ite
ct
u
re
s

(a) (b)

Fig. 1. (a) Accuracy and (b) energy consumption (mJ) of different network
structures and PIM architectures on CIFAR-10 dataset [7].

design parameters can cause 2.73% accuracy gap and 91.95%
energy consumption gap. When the PIM architecture is fixed,
different network structures show 3.45% accuracy gap and
28.31% energy consumption gap. Therefore, NN model and
PIM architecture co-design is vital to ensure high accuracy and
energy efficiency for PIM-based NN accelerators. However,
manually searching for the optimal design of NN model
and PIM architecture is unrealistic due to the huge search
space. On CIFAR-10 [7], the typical search space size (i.e.,
the number of possible designs) of NN model1 and PIM
architecture2 can reach to 1058 and 1032, respectively.

Neural Architecture Search (NAS) is an effective way to
automatically search well-performing NN models [8]. Re-
searchers have proposed PIM-oriented NAS methods to au-
tomatically explore the NN model and PIM architecture co-
design space [9], [10]. NACIM [9] and NAS4RRAM [10]
incorporate PIM architecture parameters into the search space,
and use PIM simulators for performance evaluation. However,
these studies suffer from low exploration efficiency and long
search time because of the explosive search space expansion
and the time-consuming simulation of PIM architectures.

On the one hand, the introduction of PIM architecture
parameters into the search space leads to a dramatic expansion
of the search space. In the former example, since the structure
parameters of NN models and PIM architecture design param-
eters are independent of each other, the search space increases
from 1058 to 1090 after introducing the PIM architecture-
related parameters. As a result, it is more difficult for existing
search strategies to explore this largely expanded search space.

1We consider a 30-layer NN model and each layer can be configured with
adjustable kernel sizes, group numbers, channel numbers, etc.

2The PIM architecture parameters contain crossbar size, DAC/ADC resolu-
tion, memristor precision, etc. The per-layer bitwidths of the quantized weights
and activations are also considered as architecture-related parameters [5].



On the other hand, the co-exploration of NN model and
PIM architecture needs PIM simulators in the loop to evaluate
performances, which brings heavy runtime overhead for NAS.
Existing PIM simulators (e.g., NeuroSim [11], MNSIM [12])
take about 10 minutes to evaluate the performances of a single
NN model. This poses a heavy computational burden to the
NAS process, where thousands of search results need to be
evaluated. For example, NACIM [9] spends about 60 GPU
hours on searching an optimal 8-layer NN on CIFAR-10.

In order to solve these problems, this paper proposes an
efficient co-exploration framework for NN model and PIM
architecture, which can reduce the search time from hundreds
of GPU hours to several GPU hours and generate better search
results with higher accuracy and hardware performance. The
main contributions of this paper include:
• We propose the evolutionary search algorithm with adap-

tive parameter priority (ESAPP) to improve the search
efficiency in the design space. ESAPP adjusts the search
priority of different design parameters according to their
convergences during the search. In this way, each search
iteration focuses on the sub-search space of high priority
parameters, alleviating the problem of huge search space
and improving the search efficiency.

• We propose to train a Recurrent Neural Network (RNN)
based performance predictor during the search. We use
its efficient predictions to substitute for a large portion
of costly-simulator-based evaluations. The predictor is
designed to predict the accuracy loss induced by the PIM
architecture, and this design of “prediction for difference”
enables our predictor to be trained with a small amount
of actual simulation results. Consequently, the proposed
predictor can achieve 150× speedup with only 2% error
compared with existing PIM simulators, and can substi-
tute for about 95% of the simulation workload.

• Based on ESAPP and predictor, we propose Gibbon, a
co-exploration framework for NN model and PIM archi-
tecture. Compared with existing PIM-oriented NAS work,
Gibbon supports more comprehensive algorithm fea-
tures (e.g., even-sized kernels, group convolution, mixed-
precision NN, etc.) and achieves 8.4∼41.3× search
speedup with 10.7% NN accuracy improvement and
6.48× energy-delay-product (EDP) reduction.

• Based on the results of Gibbon, we provide several
insights on the correlations of the NN model and PIM
architecture, which are helpful to guide PIM-based co-
design of model and architecture in the future.

II. BACKGROUND

A. Processing-in-Memory Architecture

Emerging memristors (e.g., Resistive Random Access Mem-
ory, RRAM) provide an alternative solution for realizing PIM
architecture. Multiple memristors can construct the crossbar
structure. Then the MVMs can be performed in memory by
mapping weight matrices onto crossbars and transforming
input feature vectors to wordline voltages. Existing work has

demonstrated memristor-based PIM can achieve 2∼3 orders
of magnitude energy efficiency improvement compared with
CMOS-based solutions [3]–[6]. Nevertheless, since PIM per-
forms MVMs in the analog domain, digital-to-analog con-
verters (DACs) and analog-to-digital converters (ADCs) are
needed, which brings quantization errors during computations.

B. Neural Architecture Search

NAS aims to leverage machine learning algorithms to auto-
matically design well-performing neural networks with limited
computing resources [8], [13]. Generally, a NAS framework
consists of three major components: search space, search
strategy, and evaluation strategy. The search space defines
all the possible NN structures (i.e., candidates) that could be
selected. The search strategy decides which NN structure to be
sampled during the search. The evaluation strategy evaluates
each candidate NN structure and feeds evaluation results back
to the search strategy. A typical type of search strategies is
evolutionary search [14]–[16]. Evolutionary search strategy
conducts three major steps in every search iteration: 1) Parent
selection: Select parent architectures from the population,
which is the set of visited candidates; 2) Children generation:
Derive child candidates by mutation or crossover; 3) Pop-
ulation update: After the evaluation of their performances,
update these child candidates into the population.

C. Hardware-Oriented NAS

Recently, NAS researchers have begun to consider hardware
performance and co-explore the NN structure and hardware
architecture [17]. For PIM-based hardware, NAS4RRAM [10]
proposes a PIM-aware NAS framework, searching for deploy-
able networks with the highest accuracy on PIM. Besides
searching for NN structures, NACIM [9] also searches for
hardware parameters. NACIM uses a time-consuming PIM
simulator (i.e., NeuroSim [11]) for the performance evaluation,
resulting in a large search cost of about 59 GPU hours.
UAE [18] adopts a more sophisticated evaluation strategy,
which leads to an even larger search cost (154 GPU hours).

III. FRAMEWORK OVERVIEW

The proposed co-exploration framework for NN model and
PIM architecture (Gibbon) is shown in Figure 2(a). Gibbon
consists of three key parts: the joint search space for NN model
and PIM architecture co-exploration, the evolutionary search
algorithm with adaptive parameter priority (ESAPP), and the
RNN-based performance predictor.

The joint search space contains many search candidates,
and each candidate specifies the parameters related to both
the NN model and the PIM architecture. Each iteration of
the search process goes as follows. First, ESAPP samples
multiple parents and sends them to the RNN-based predictor.
The predictor maps the description of the NN structure and
PIM architecture to an embedding vector. Then, an RNN takes
the embedding vector as the input and predicts hardware per-
formances and the accuracy difference. The predicted accuracy



(b) Joint Search Space

Input Image Outputs

Bl
oc

k 0

Bl
oc

k 1

Bl
oc

k N
-1

…
Gibbon
Panda

Cat

NN Block

BN

Activation

Conv

PIM Architecture
Mem Bank

Subarray
Subarray

Crossbar

D
AC

AD
C

Xbar size

Quantization

Conv Layers
Inp
ut

ch
an
ne
l

Kernel size

Output channel

Gr
ou
p ✮ Even-sized kernel

→ high PIM utilization
✮ Group-conv
→ PIM friendly

✮ Layer-wise
Quantization

(d) Evolutionary Search with Adaptive Parameter Priority (ESAPP)
Original Search Space

Param. 1

Param. 2

Param. 3
…

Candidate. 1

…
Candidate. 2

…
Candidate. 3

…

Candidate. N
…

Sample (c)
R

N
N

-based P
redictor

Perf 1

Perf 2

Perf 3

Perf N

…
S

electgood
candidates

Parent 1
…

Parent 2
…

Assign Param. Priority

High priority:

Low priority:
Pruned Search Space

M
utation

Child 1
…

Child 2
…

…

8bit
4bit
4bit

2bit
4bit
8bit

(c) RNN-based Predictor

Mem Bank
Subarray

Area Power

NN StructurePIM Arch Data

Embedder

SuperNet

One shot with
shared weights

Gradient
updateRNN

Embedding

MLP

PIM arch acc loss Base acc

PIM-based NN acc

(a) Framework Overview

ESAPPUltra-large
Joint Search
Space

Parents

Sample

Sample
Strategy

Efficient
Predictor

Selected
Parents

Children Simulation
Results

Train

Priority
Update

Filter

Costly PIM Simulator
(e.g., MNSIM, NeuroSim)

Mutate

Stage

Fig. 2. (a) Framework overview. Gibbon contains three key components: (b) joint search space for NN and PIM co-exploration, (c) RNN-based accuracy
difference and performance predictor, and (d) evolutionary search algorithm with adaptive parameter priority (ESAPP).

difference depicts the accuracy loss caused by PIM architec-
tures. After getting the prediction results, we use accuracy and
hardware performances as the evaluation metric to filter out
∼95% of the sampled parents. Afterward, ESAPP mutates the
selected parents to get new candidates (i.e., children), where
the mutations are conducted according to the priority of all
decision choices. Finally, these candidates are evaluated by
the accurate but costly PIM simulator (in this paper, we use
MNSIM [12]), and the evaluation results are used to update
the RNN-based predictor and the dynamic priorities in ESAPP.
Gibbon repeats the former steps until the search converges.

IV. KEY TECHNIQUES IN GIBBON

A. Joint Search Space for NN and PIM Co-Exploration
The joint search space (Figure 2(b)) consists of two parts,

i.e., the NN model structure part and the PIM-related part.
In the search space of NN structure, each candidate structure

consists of three stages separated by down-sampling convolu-
tions. And each stage consists of multiple blocks with various
design choices (e.g., output channel number, kernel size, group
number of group convolutions, etc.). Also, the block numbers
in all stages are adjustable design choices. Compared with
existing PIM-oriented NAS methods, we incorporate two PIM-
aware features into our search space design. Firstly, we explore
the feasibility of even-sized convolution kernels. Commonly
used NN models use odd-sized convolution kernels to avoid
the feature shifting problem caused by even-sized kernels [19].
However, mapping odd-sized kernels onto the memristor cross-
bar deteriorates the hardware resource utilization, since the
size of memristor crossbar is usually a power of two [20]. To
solve this contradiction, Gibbon adopts a symmetric padding
method [19] to support even-sized convolution kernels with-
out incurring accuracy loss. Secondly, only part of crossbar
wordlines can be activated simultaneously due to the current
limitation of bitlines, which is consistent with the group-wise
calculation behavior of group convolutions. Inspired by this,

we introduce group convolutions and take the group number
as an adjustable parameter in the search space.

The PIM-related search space is constructed by two param-
eter sets, i.e., PIM architecture design parameters and quan-
tization parameters. The basic PIM architecture refers to [3],
[5], where adjustable design parameters include crossbar size,
ADC/DAC resolution, memristor precision, and the number
of activated wordlines and bitlines at one time. Because
PIM architectures mainly show their superiority for quantized
NNs, our PIM-related search space also contains quantization
parameters (e.g., quantization bitwidth). In this way, Gibbon
supports the search for mixed-precision NN, i.e., different
layers can have different quantization precision for their
weights and activations, which can bring great performance
improvements to PIM-based NN systems [5].

B. Evolutionary Search with Adaptive Parameter Priority
The large search space size of PIM-oriented co-exploration

poses search efficiency challenges on the application of evolu-
tionary search. For example, the number of candidate designs
reaches up to 1090 in our joint search space of NN structure
parameters and the corresponding PIM-related parameters,
resulting in tens to hundreds of GPU hours for search. To
tackle this problem, we propose the evolutionary search al-
gorithm with adaptive parameter priority (ESAPP), as shown
in Figure 2(d). ESAPP can be regarded as a dynamic search
space pruning method to improve the search efficiency, which
reduces the average equivalent search space size3 from 1090

to roughly 1042 during the search in our experiments.
In the children generation step of each search iteration,

ESAPP assigns a priority to each design parameter and de-
termines which parameters to be mutated in this iteration
according to the search priority. To be specific, we avoid
changing parameters with low priority in this search iteration,

3The equivalent search space size is estimated by “omitting” design
parameters with low priority from the original search space.



0.2

0.4

0.6

0.8

1.0
Block number Weight bit Activation bit

1 41 81 121 161 201 241 281
Search iteration

Fig. 3. Convergence of different design parameters. The y-axis indicates the
proportion of the optimal candidates among all candidates (the closer to 1.0,
the more convergent the parameter is).

realizing equivalent search space pruning. To determine the
parameter search priority during the search, we analyze the
convergence of different design parameters. Figure 3 reveals
that different design parameters show different convergence
curves. ESAPP uses the convergence of each parameter to
determine its search priority, where lower priority is assigned
to converged parameters to reduce redundant search efforts.
In this way, ESAPP can explore the large search space in a
more organized way, by first evaluating and deciding easy-
to-converge parameters, and focusing on difficult-to-converge
ones in the later search stage.

Compared with traditional search space pruning meth-
ods [21], ESAPP can prevent the search from being stuck
into the local optimum, since the parameter priority can be
dynamically adjusted throughout the search process. While in
traditional search space pruning methods, a parameter cannot
become searchable again after being pruned out.

Algorithm 1 shows the details of ESAPP. In each search iter-
ation, ESAPP firstly selects candidates with good performance
(e.g., top 100 candidates) in the candidate set as the parents
(line 2). Then, we use entropy to describe the convergence of
each parameter, which can be calculated as in Equation 1:

Entropy =
∑

ω∈Ωω

−fω log2(fω) (1)

where Ωω is the set of possible values for this design parameter
ω, and fω represents the occurrence frequency of ω in the
selected candidate set. Then, we assign low search priority
to parameters with low entropy (line 3∼5). After that, we
determine the mutation probability according to parameter
priorities (line 6). The converged parameters with low entropy
have low mutation probability, which means these parameters
will remain unchanged with a high probability. Finally, the
mutation procedure is executed to generate the new candidates
for the next search iteration (line 7∼12).

C. RNN-based Predictor

The evaluator assesses the NN accuracy and hardware per-
formances of candidate designs. Existing PIM-oriented NAS
work [9] uses PIM simulators as the evaluator. However, due
to the large-scale PIM architecture and NN model, existing
PIM simulators require ∼10 minutes for evaluating a single
NN model [11], [12]. Considering that there exist hundreds
of search-evaluation iterations in a NAS process, minute-level
PIM simulators will bring huge search costs.

Algorithm 1 Pseudo code of ESAPP
Input: Population: {Candidate}i−1; History entropy table:

HET ; Evaluation results of candidates: R
Output: New population: {Candidate}i

1: Initialize {Candidate}i: {Candidate}i.init()
2: Select good candidates as parents:

Parents = sort(R, {Candidate}i−1)
3: For each design parameter x, calculate the entropy of

parents: Entropyx = calc e(Parents)
4: Update HET : HET = HET.append({Entropyx})
5: Assign priority to each parameter according to entropy:

Priorityx = calc p(HET )
6: Determine the mutation probability of each parameter:

Px = Priorityx/
∑

j(Priorityj)
7: //Mutate according to {Px}:
8: for each parent in Parents do
9: child = mutate(parent, {Px})

10: {Candidate}i.append(parent)
11: {Candidate}i.append(child)
12: end for

1) Predictor Construction: To accelerate the evaluation, we
propose an RNN-based NN accuracy and PIM performance
predictor. It takes the description of a candidate design as
the input and predicts the evaluation results of the simu-
lators, avoiding the time-consuming circuit simulation and
complicated PIM computing error analysis. As depicted in
Figure 2(c), the RNN-based predictor consists of three key
parts: design embedder, feature extractor, and regressor.

The design embedder transforms the discrete description of
candidate design into one continuous embedding vector. With
this transformation, the NN-based predictor can be trained with
gradient-based optimization, and can learn the relationship
between different design parameters.

The feature extractor takes the former embedding vector
as inputs and extracts features of the candidate. Each NN
model in the search space contains three stages stacked by
multiple blocks, and the numbers of blocks are also adjustable.
Therefore, we adopt an RNN model as the feature extractor
to handle inputs with variable length.

The regressor is a three-layer multi-layer perception
(MLP), and outputs the final predicted results based on the
extracted features (i.e., the average of RNN outputs in all
timesteps). During the search, simulation results of PIM simu-
lators are used as the ground-truth values to train the predictor.

2) Ranking Quality of the Predictor: Unlike other CMOS-
based NN accelerators, PIM architecture faces more severe
computing error caused by non-ideal factors (e.g., device
variation) and hardware quantization error (e.g., ADC quanti-
zation). Thus it is necessary to take the PIM-related parameters
into consideration when predicting the PIM-based NN accu-
racy. Different from vanilla predictor-based NAS methods [22]
that predict the accuracy directly, Gibbon proposes to predict
the relative accuracy loss brought by PIM architecture of a
candidate design, as shown in Figure 2(c). We use the one-



0.99 1.07 1.03 
0.88 

0.0

0.5

1.0

1.5

Acc. Area Lat. EnergyN
or

m
.p

re
di

ct
io

n
re

su
lts3000

1000
300
100
30
10

3
1

R
un

tim
e

co
st

s
/s

(a)
(b)

Simulator

Predictor

-0.2

0

0.2

0.4

0.6

0.8

K
D

co
ef

fic
ie

nt

(c) Search iteration

Non-diff predictor

Diff predictor

1 11 21 31 41 51 61

Fig. 4. (a) Time cost comparison of predictor and PIM simulator; (b)
Prediction results normalized to PIM simulator (Acc. and Lat. represent PIM-
based NN accuracy and computing latency, respectively); (c) KD coefficients
of the prediction-for-difference predictor and the vanilla predictor on the same
validation set of candidate designs.

shot accuracy [16] as the base accuracy, and the one-shot
weights in the supernet are updated jointly in each search
iteration. Thanks to the design of “prediction for difference”,
the predictor only has to model the effects brought by the
PIM architecture, which is an easier problem than predicting
the absolute accuracy. Therefore, Gibbon manages to train a
more accurate predictor with a small amount of simulation
results as training data.

To demonstrate the effectiveness of our prediction-for-
difference design, we compare the Kendall’s Tau (KD) ranking
correlation of the difference predictor and the vanilla predictor.
KD is a commonly adopted criterion for the ranking quality
of the predictor or evaluator in NAS studies [22], and its
calculation goes as follows:

KD =
∑
i<j

sgn(yi − yj) sgn(si − sj)/
(
M
2

)
∈ [−1, 1] (2)

where M denotes the number of candidates, and yi and si
represent the ground-truth performance and predicted perfor-
mance, respectively. sgn(·) is the sign function. A higher KD
indicates that the ranking of predictions is more similar to the
ranking of ground-truth performances.

The results in Figure 4(c) show that the prediction-for-
difference predictor can give out predictions with better rank-
ing quality using the same amount of training data. As for the
prediction error, Figure 4(b) shows that the relative prediction
error compared with the simulation results is only 1.2% and
2.6% for NN accuracy and computing latency, respectively.

3) Efficiency of the Predictor: In terms of the evaluation
time cost, Figure 4(a) shows that the PIM simulator takes
an average of 549s simulation time, while the predictor takes
an average of 7.59s for NN accuracy and PIM performance
prediction (98.6% reduction). And Gibbon uses the predictor
to substitute for 95% of the simulation workload.

V. EXPERIMENT

A. Experiment Setup
Gibbon is developed based on aw nas [23], an open source

NAS framework. We conduct all experiments on CIFAR-
10 [7]. Details of the search space design are summarized

TABLE I
NN MODEL AND PIM RELATED SEARCH SPACE

NN Model Search Space
Block Number 2, 4, 6, 8, 10

Output Channel Number 16, 32, 48, 64, 80, 96
Kernel Size 1, 2, 3

Group Number 1, 2, 4, 8, 16
Quantization Search Space

Weight/Activation Bitwidth 5, 7, 9
Hardware Search Space

Crossbar Size 32, 64, 128, 256
ADC Resolution 4, 6, 8, 10
DAC Resolution 1, 2

Memristor Precision 1, 2

in Table I. In this paper, we use the most mature 1-bit and 2-
bit memristors, and Gibbon also supports the search of other
device precision. We adopt MNSIM [12] as the simulator to
train the predictor (other PIM simulators can also be used in
Gibbon). The data of memristor, ADC, and DAC we used refer
to the default values provided in MNSIM [12].

B. Co-exploration Results Comparison

Table II provides the search results comparison between
Gibbon and other PIM-oriented NAS work. For a fair compar-
ison, we test the NN model discovered by NACIM [9] with
MNSIM to get the hardware performances. UAE [18] and
NAS4RRAM [10] only provide NN accuracy without giving
hardware performances. We also compare Gibbon with the
vanilla CARS [16] without ESAPP and the predictor design.
We also provide search results of Gibbon under three different
optimization targets (adjust the weight of each objective in
the search reward): EDP optimization, area optimization, and
accuracy optimization. The search time is evaluated on a single
Nvidia RTX 3090 GPU.

Compared with other PIM-oriented NAS work, Gibbon can
achieve 0.2∼10.7% accuracy promotion in only seven search
hours, realizing 8.4∼41.3× search efficiency improvement.
Furthermore, compared with CARS, ESAPP and predictor
show 10.3× search speedup with similar search results. In
terms of the hardware performance, the EDP optimization
Gibbon can achieve 10.7% accuracy improvement and 6.48×
EDP reduction, and Gibbon with area optimization can achieve
2.5% accuracy improvement and 2.51× area reduction.

Figure 5 demonstrates the accuracy and EDP results of
Gibbon with different optimization targets. The results of
Gibbon w/o ESAPP and w/ ESAPP are provided under the
same search time. The superiority of Gibbon w/ ESAPP shows
that ESAPP can find better results in the same search time.

TABLE II
SEARCH RESULTS (PIM-BASED NN ACCURACY, EDP, AREA, AND SEARCH

TIME) COMPARISON OF DIFFERENT CO-EXPLORATION APPROACHES.

Method NN
accuracy

EDP
(ms×mJ)

Area
(mm2)

Search
time (h)

NACIM [9] 73.9% 1.55 17.17 59
UAE [18] 83.0% – – 154

NAS4RRAM [10] 84.4% – – 289
CARS [16] (acc opt.) 88.0% 11.03 227.73 72

Gibbon (edp opt.) 84.6% 0.24 167.16 7
Gibbon (area opt.) 76.4% 1.00 6.84 7
Gibbon (acc opt.) 88.3% 14.33 186.32 7



72%
74%

76%

78%

80%
82%

84%

86%

88%

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

P
IM
-b
as
ed
N
N
ac
cu
ra
cy

EDP (ms*mJ)

Gibbon edp opt. w/ ESAPP
Gibbon edp opt. w/o ESAPP

Gibbon area opt. w/ ESAPP
NACIM

Area: 17.17

Avg Area: 9.28

Avg Area: 142.07

Avg Area: 125.46

Fig. 5. Search results (PIM-based NN accuracy and EDP) of NACIM, Gibbon
w/o ESAPP, and Gibbon w/ ESAPP. The results of Gibbon w/o ESAPP and
Gibbon w/ ESAPP are given under the same search time.

VI. INSIGHTS PROVIDED BY GIBBON

By inspecting the NN models and PIM architectures dis-
covered by Gibbon, we find some interesting observations as
follows, hoping to provide some design suggestions for the
co-design of NN model and PIM architecture in the future.

Insight 1: Most convolution layers tend to select even-
sized kernels to reduce the area and EDP. When other design
parameters are the same, design candidates with 2×2 kernels
can decrease ∼85% EDP and ∼10% area compared with those
with 3×3 kernels. And the accuracy loss is only ∼1%.

Insight 2: Group convolution can reduce the amount of
calculations. When one DAC is multiplexed by four wordlines,
most convolution layers prefer to choose two or four as the
number of groups, which is less than the number of DAC
multiplexes and does not bring additional latency overhead.

Insight 3: For accuracy optimization, the shallower and
deeper layers tend to have larger output channel number (e.g.,
64), while the middle layers have smaller ones (e.g., 16).

Insight 4: For PIM-based mixed-precision NN on CIFAR-
10, considering accuracy and energy consumption, the deeper
convolution layers tend to choose high quantization bitwidth of
weights while the shallower layers (except the first layer) pre-
fer low weights precisions. For the quantization of activations,
the shallower and deeper convolution layers both prefer high
bitwidth, while the middle layers tend to choose low bitwidth.

Insight 5: For CIFAR-10, the accuracy of 8-bit ADCs is
close to that of 10-bit ADCs. But 6-bit ADCs lead to non-
negligible accuracy loss. In terms of crossbar size, the average
optimal accuracy can be obtained when the size is 64×64.

Insight 6: The number of output channels of the first few
layers has a significant impact on the total latency. Low latency
models tend to choose smaller output channel number in
shallow layers. Relatively, deep layers prefer large channel
number to improve accuracy with little latency overhead.

Insight 7: The energy-optimal PIM design tends to choose
large crossbar size (e.g., 256×256), which can reduce the num-
ber of kernel splits and average used ADCs/DACs. Compared
with crossbars in size of 128×128, PIM architectures with
256×256 crossbars can reduce 75% energy consumption.

VII. CONCLUSION

In this paper, we propose Gibbon to efficiently co-explore
NN model and PIM architecture. Compared with existing PIM-
oriented NAS work, Gibbon leverages ESAPP and RNN-based

predictor to improve the search efficiency. Experimental results
show that Gibbon can achieve 8.4∼41.3× search speedup with
10.7% NN accuracy improvement and 6.48× EDP reduction
compared with existing work.

VIII. ACKNOWLEDGEMENTS
This work was supported by National Key R&D Program

of China (No. 2017YFA02077600); National Natural Science
Foundation of China (No. 61832007, U19B2019, 61621091);
China Postdoctoral Science Foundation (No. 2019M660641);
Tsinghua EE Xilinx AI Research Fund; Beijing National
Research Center for Information Science and Technology
(BNRist); Beijing Innovation Center for Future Chips; Beijing
Academy of Artificial Intelligence.

REFERENCES

[1] A. Krizhevsky, I. Sutskever et al., “Imagenet classification with deep
convolutional neural networks,” NeurIPS, vol. 25, pp. 1097–1105, 2012.

[2] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you need,”
arXiv preprint arXiv:1706.03762, 2017.

[3] P. Chi, S. Li, C. Xu et al., “Prime: a novel processing-in-memory archi-
tecture for neural network computation in reram-based main memory,”
in ISCA, 2016, pp. 27–39.

[4] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in IEEE HPCA, 2017, pp. 541–552.

[5] Z. Zhu, H. Sun et al., “A configurable multi-precision cnn computing
framework based on single bit rram,” in ACM/IEEE DAC, 2019, pp. 1–6.

[6] T.-H. Yang, H.-Y. Cheng, C.-L. Yang et al., “Sparse reram engine:
Joint exploration of activation and weight sparsity in compressed neural
networks,” in ISCA, 2019, pp. 236–249.

[7] Kaggle et al., “Cifar-10 - object recognition in images,” website, 2014,
https://www.kaggle.com/c/cifar-10.

[8] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in ICLR, 2017.

[9] W. Jiang, Q. Lou, Z. Yan et al., “Device-circuit-architecture co-
exploration for computing-in-memory neural accelerators,” IEEE Trans-
actions on Computers, vol. 70, no. 4, pp. 595–605, 2020.

[10] Z. Yuan, J. Liu, X. Li et al., “Nas4rram: neural network architecture
search for inference on rram-based accelerators,” Science China Infor-
mation Sciences, vol. 64, no. 6, pp. 1–11, 2021.

[11] X. Peng, S. Huang, H. Jiang et al., “Dnn+neurosim v2. 0: An end-to-
end benchmarking framework for compute-in-memory accelerators for
on-chip training,” IEEE TCAD, 2020.

[12] Z. Zhu, H. Sun, K. Qiu et al., “Mnsim 2.0: A behavior-level mod-
eling tool for memristor-based neuromorphic computing systems,” in
GLSVLSI, 2020, pp. 83–88.

[13] P. Ren, Y. Xiao, X. Chang et al., “A comprehensive survey of neural
architecture search: Challenges and solutions,” ACM Computing Surveys,
vol. 54, no. 4, pp. 1–34, 2021.

[14] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A survey
on evolutionary neural architecture search,” IEEE TNNLS, 2021.

[15] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in AAAI, 2019, pp. 4780–4789.

[16] Z. Yang, Y. Wang, X. Chen et al., “Cars: Continuous evolution for
efficient neural architecture search,” in CVPR, 2020, pp. 1829–1838.

[17] Y. Lin, M. Yang, and S. Han, “Naas: Neural accelerator architecture
search,” arXiv preprint arXiv:2105.13258, 2021.

[18] Z. Yan, D.-C. Juan, X. S. Hu et al., “Uncertainty modeling of emerging
device based computing-in-memory neural accelerators with application
to neural architecture search,” in IEEE ASP-DAC, 2021, pp. 859–864.

[19] S. Wu, G. Wang, P. Tang et al., “Convolution with even-sized kernels
and symmetric padding,” arXiv preprint arXiv:1903.08385, 2019.

[20] Z. Zhu, J. Lin et al., “Mixed size crossbar based rram cnn accelerator
with overlapped mapping method,” in ICCAD, 2018, pp. 1–8.

[21] Y. Hu, Y. Liang, Z. Guo et al., “Angle-based search space shrinking for
neural architecture search,” in ECCV, 2020, pp. 119–134.

[22] X. Ning, Y. Zheng, T. Zhao et al., “A generic graph-based neural
architecture encoding scheme for predictor-based nas,” in ECCV, 2020,
pp. 189–204.

[23] X. Ning, C. Tang, W. Li et al., “aw nas: A modularized and extensible
nas framework,” arXiv preprint arXiv:2012.10388, 2020.


