

CodedVTR: Codebook-based Sparse Voxel TRansformer with Geometric Guidance

Tianchen Zhao

He Wang

Niansong Zhang

Li Yi*

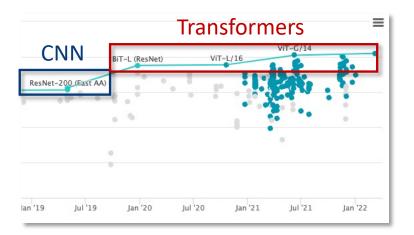
Xuefei Ning

Yu Wang

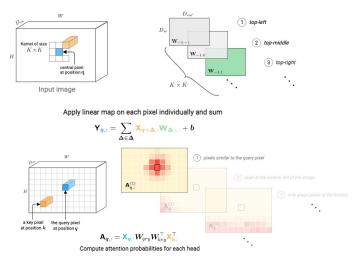
* Corresponding Author

Background

- Transformers outperform CNN and achieve SOTA in many vision tasks
- Transformer's superiority:
 - Less inductive bias -> Better representative power



Performance of ImageNet1K Classification^[1]



Self-Attention could **approximate** Conv, And it is a **more generalized form** of Conv^[2]

[1] ImageNet Benchmark (Image Classification) | Papers With Code

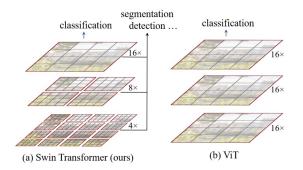
[2] Cordonnier, J., Loukas, A., & Jaggi, M. (2020). On the Relationship between Self-Attention and Convolutional Layers. ArXiv, abs/1911.03584.

• Transformer's Problem: Harder to optimize and generalize

- Rely on large-scale pretraining, **Overfits** when directly trained on smaller dataset
- Slow convergence & Sensitive to training hyperparameters (LR, initialization, DataAug...)
- Current Solution: Introduce domain-specific inductive bias

"When directly trained on the ImageNet, ViT yields modest accuracies of a few points below ResNets of comparable size "^[1]

> ViT^[1] requires large-scale pretraining to outperform ResNets

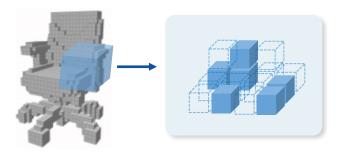


Swin Transformer^[2] uses **Hierarchical Window-based local** aggregation

Dosovitskiy, Alexey et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale." ArXiv abs/2010.11929 (2021): n. pag.
Liu, Ze et al. "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows." 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (2021): 9992-10002.

Background

- Introducing Transformer into 3D Domain: The Generalization Issue is aggravated
 - 3D Data (Sparse Voxel) has unique properties (Sparse & Irregular)
 - Relatively limited data scale



Voxel's unique Properties: Sparse and Irregular

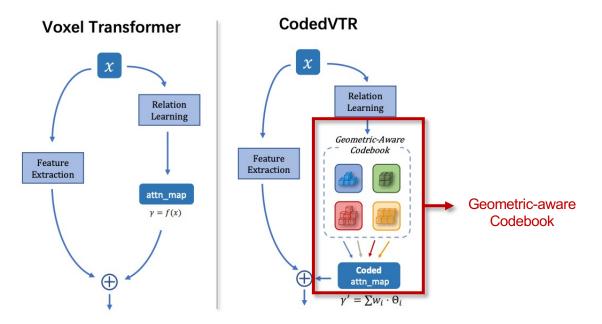
Dataset	Method (Model)		Params	mIOU
ScanNet	Convolution	Minkowski-M	7M	67.3%
		Minkowski-L	11M	72 1%
	Transformer	PointTransformer	6M	58.6% (-8.7%)
		VoTR (Mink-M)	7M	62.5% (-4.8%)
		VoTR (Mink-L)	11M	66.1% (-6.3%)
SemanticKITTI	Convolution	Minkowski-M	7M	58.9%
		Minkowsk-L	11M	61.1%
	Transformer	VoTR (Mink-M) †	7M	56.5% (-2.4%)
		VoTR (Mink-L)	11M	58.2% (-2.9%)

Simply employ transformer fails to outperform CNN

• Key: Alleviate the Generalization Issue

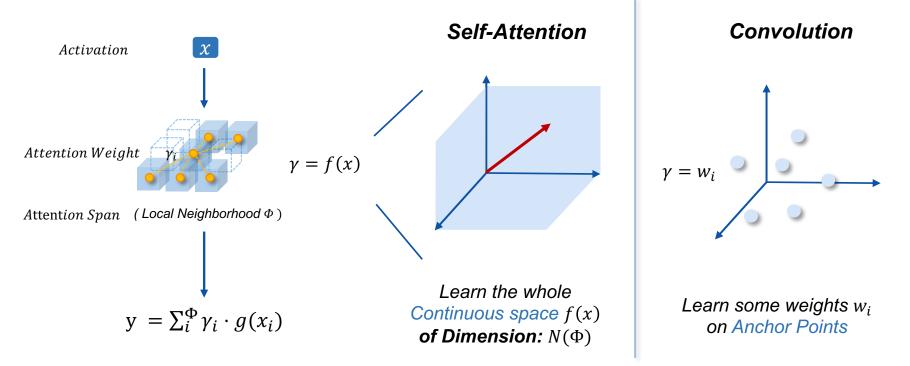
CodedVTR: introduce Geometric-aware Codebook

- Codebook-based Attention
- Geometric-aware Attention



Motivation

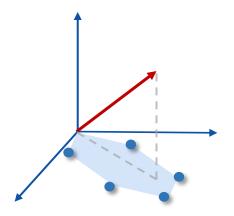
- **Comparison of Conv and Transformer** (Local Self-Attention)
 - The Attention Weight Generation:



• Codebook-based attention: Encode the Attn-Weight with Codes

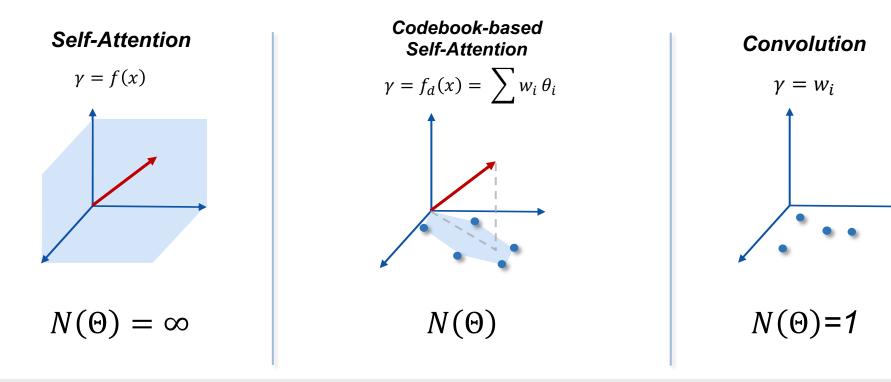
$$f(x) \sim f_d(x) = \sum w_i \, \theta_i$$

- Codes θ_i could be viewed as:
 - attention weight "Prototypes"
 - a set of basis span a subspace
- Project the attention learning in the subspace,
- Regularization helps generalization

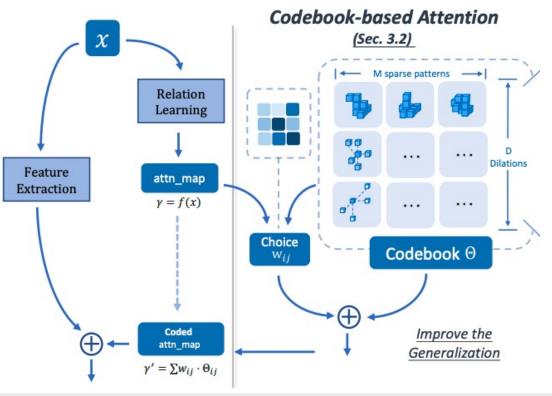


Learn the Subspace $f_d(x)$ of Dim: $N(\Theta) < N(\Phi)$

• Codebook-based attention is an **intermediate state** of self-attention and convolution

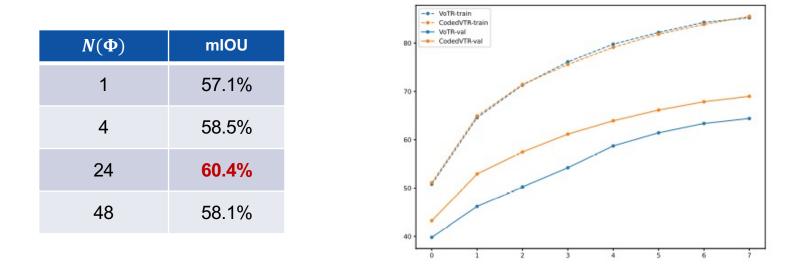


Codebook Design



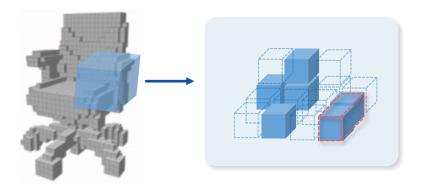
Experimental Results

• Results of Codebook Design

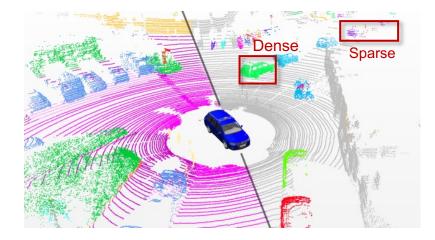


CodedVTR helps generalization

• 3D Data's Unique Property -> Geometric-aware self-attention

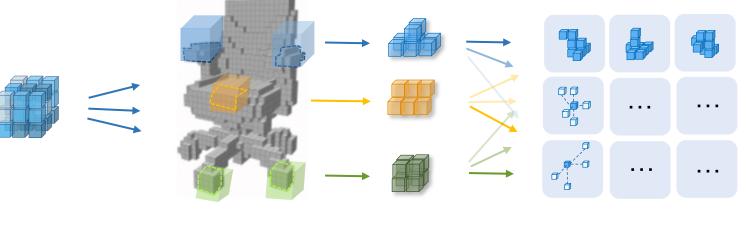


Sparse & Geometric Shape



Non-uniform Density(Outdoor)

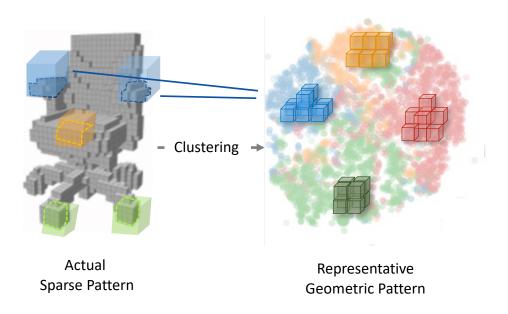
- Geometric-aware self-attention
- Geo-shape: Assign different geometric shapes for codebook elements
- Geo-guide: Encourage attention to match actual sparse pattern



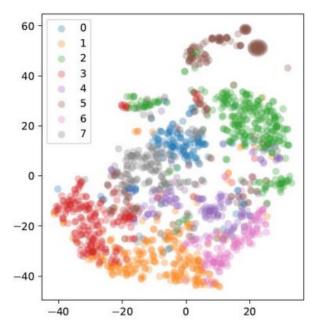
Same convolution weight

different input voxel sparse pattern Different Geometric Shapes Codebook-Elements

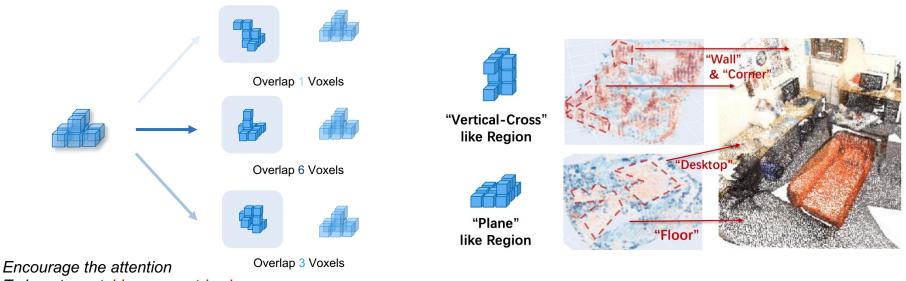
- How to determine geometric shape?
 - Adopt K-means Clustering to get 8 representative sparse pattern in 3 dilations



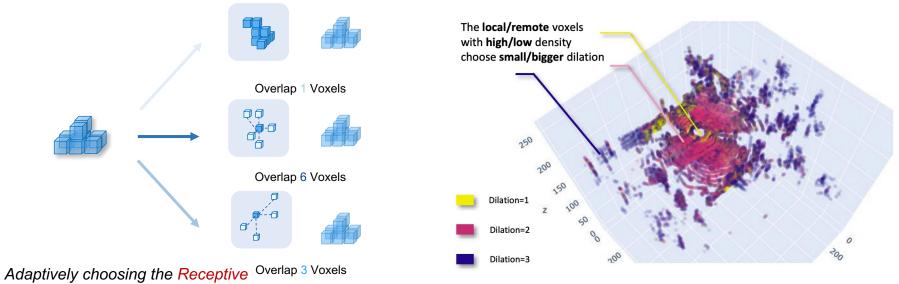
Clustering t-SNE Visualization



- How to Geometric guide?
 - Regularization for attention with "mismatch code"



- How to Geometric guide?
 - Regularization for attention with "mismatch code"



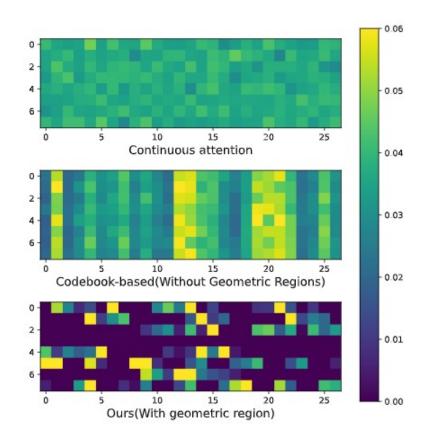
2022/4/5

Experimental Results

Naïve self-attention (Uniform Attention Map)

Codebook-based self-attention (Still Similar attention map)

Geometric-aware self-attention (Meaningful attention map)



Dataset	Method (Model)		Params	mIOU
ScanNet	Convolution	Minkowski-M	7M	67.3%
		Minkowski-L	11M	72.4%
	Transformer	CodedVTR (Mink-M)	7M	68.8 %(+1.5%)
		CodedVTR (Mink-L)	11M	73.0 %(+0.6%)
SemanticKITTI	Convolution	Minkowski-M	7M	58.9%
		Minkowsk-L	11M	61.1%
		SPVCNN	8M	60.7%
	Transformer	CodedVTR (Mink-M)	7M	60.4 % (+0.5)
		CodedVTR (Mink-L)	11M	63.2 % (+2.1%)
		CodedVTR (SPVCNN)	8M	61.8 %(+1.1%)
Nuscenes	Convolution	Minkowski-M	7M	66.5%
		Minkowsk-L	7M	69.4%
	Transformer	CodedVTR (Mink-M)	7M	69.9 % (+3.4%)
		CodedVTR (Mink-L)	11M	72.5% (+3.1%)