CLOSE: Curriculum Learning On the Sharing Extent Towards Better One-shot NAS

Zixuan Zhou*, Xuefei Ning*, Yi Cai, Jiashu Han, Huazhong Yang, Yu Wang*

NICS-EFC lab, Tsinghua University <u>*zhouzx17@gmail.com</u> <u>*foxdoraame@gmail.com</u> <u>*yu-wang@tsinghua.edu.cn</u>

2022.08.07

2022/8/13

1. Background

- 2. Methodology
- 3. Experiment
- 4. Conclusion

Neural Architecture Search (NAS)

Thomas Elsken, et al., Neural Architecture Search: A Survey, JMLR 2019.

Input 3 -> Concat -> 1x1 -> Max Pool

Weakness & Improvement of One-shot NAS

- RECTRONIC 1952 ENG
- One-shot NAS suffers from the poor ranking correlation between the one-shot performances and stand-alone performances of architectures.

Kendall's Taus of the SuperNet trained for 1000 epochs are poor. NB101: 0.369 NB201: 0.766 NB301: 0.515 [1]

Traditional NAS high ranking correlation

One-shot NAS poor ranking correlation

A main factor causes to the poor correlation is the **unsuitable sharing extent** [1].

[1]. Ning et al., Evaluating Efficient Performance Estimators of Neural Architectures, NeurIPS 2021.[2] Zhao et al. Few-shot Neural Architecture Search, ICML 2021.

[3] Su et al. K-shot NAS: Learnable Weight-Sharing for NAS with K-shot Supernets, ICML 2021.

- 1. Background
- 2. Methodology
- 3. Experiment
- 4. Conclusion

Motivation

• Observation 1: Using a larger sharing extent can accelerate the training speed, but cannot achieve a high saturating performance.

Motivation

Observation 2: Using operations' positions to decide the sharing scheme is inappropriate.

Curriculum Learning On Sharing Extent (CLOSE)

• Dynamically Adjust Sharing Extent and Scheme in the supernet

- A curriculum learning-like supernet training strategy
 - Use larger sharing extent in the early training stage to accelerate the training process.
 - Gradually reduce the sharing extent in the later stage to boost the saturating performance.
- A novel supernet with adjustable sharing extent and scheme
 - Decouple the operations and parameters to simply support the sharing extent adjustment.
 - Adopt a control module to flexibly and more properly decide the sharing scheme.

Curriculum Learning On Sharing Extent (CLOSE)

• CLOSENet: A novel and flexible supernet

- Enable flexible sharing scheme (pick the shared parameters based on the functionality by the GATE module)
- Enable adjustable sharing extent (change the extent by simply adding the GLOW block)

Curriculum Learning On Sharing Extent (CLOSE)

- CLOSE: A curriculum learning-like supernet training strategy
 - Using large sharing extent is "easy" for supernet to train.
 - Reducing the sharing extent increases the "difficulty", but can push its limits.

Challenge 1: Performance drop after adding a new randomly-initialized GLOW block.

Technique 1: Weight Inherit Technique (WIT). Make the new GLOW block to inherit the parameters from the previous one.

Challenge 2: Smaller learning rate makes the training hard to jump out of the local optimal solution. Technique 2: Schedule Restart Technique (SRT). Reset the learning rate and its schedule at some preset epochs.

- 1. Background
- 2. Methodology
- **3. Experiment**
- 4. Conclusion

Ranking Quality on Four NAS Benchmarks

- Evaluation Criteria
 - Kendall's Tau (KD): The relative difference of the number of concordant pairs and discordant pairs
 - P@top5%: The proportion of true top-5% architectures in the top-5% architectures according to the one-shot estimations

0.6

0.4

0.2

- NAS Benchmark
 - NAS-Bench-201 / NAS-Bench-301: Topological search space
 - NDS-ResNet / ResNeXt-A: Non-topological search space

10

20

30

94.0

93.5

93.0

92.5

92.0

Search Performance on DARTS Search Space

94.5

94.0

93.5

93.0

92.5

92.0

0

10

20

30

- DARTS Search Space
 - A generic topological search space that contains 10^{18} architectures

SNAS

CLOSE

Vanilla

50

40

- The architectures' performances are provided by NAS-Bench-301
- Search Strategy
 - DARTS , SNAS , CARS

DARTS

40

CLOSE

Vanilla

50

	CIFAR-10			ImageNet	
Method	Top-1 Error (%)	Param (M)	Search Cost (GPU days)	Top-1 Error (%)	Param (M)
NASNet-A [41]	2.65	3.3	2000	26.0	5.3
AmoebaNet-B [26]	2.55	2.8	3150	26.0	5.3
PNAS [17]	3.41	5.1	225	25.8	5.1
ENAS [23]	2.89	4.6	0.5	-	-
DARTS [18]	2.76	3.3	1.5	26.9	4.9
SNAS [33]	2.85	2.8	1.5	27.3	4.3
BayesNAS [39]	2.81	3.4	0.2	26.5	3.9
GDAS [5]	2.82	2.5	0.17	27.5	4.4
CLOSE (Ours)	2.72 ± 0.04	4.1	0.6	24.7	4.8

WIT SR.	SBT	NAS-B	NAS-Bench-301		ResNet
	0101	KD	P@top5%	KD	P@top5%
		0.1104	0.1145	0.6339	0.5387
\checkmark		0.1047	0.1122	0.6550	0.5520
	\checkmark	0.2004	0.1610	0.6448	0.5280
\checkmark	\checkmark	0.5168	0.3470	0.6786	0.5667

Effect of the GATE module

GATE	NAS-Bench-201		NAS-Bench-301		
	KD	P@top5%	KD	P@top5%	
w/o. w.	0.3627 0.7622	0.2014 0.5387	0.2236 0.5168	0.1924 0.3470	

Effect of gradually adding the GLOW blocks

Benchmark	Fixed number of blocks				CLOSE
	2	3	4	5	CHOSE
NB201 NB301	$0.7320 \\ 0.4533$	$0.7247 \\ 0.3427$	$0.7073 \\ 0.3301$	- 0.3106	$\begin{array}{c} 0.7622 \\ 0.5168 \end{array}$

- 1. Background
- 2. Methodology
- 3. Experiment
- 4. Conclusion

- Knowledge
 - Large sharing extent also has some positive effects on one-shot supernet training, which means that improving both the efficiency and efficacy is a promising direction.
- CLOSE: A curriculum learning-like supernet training strategy
 - An intuitive training approach based on the observations that different sharing extents have different effects on different training stage.
 - Design effective techniques to help switch the curriculum appropriately.
- CLOSENet: A novel and flexible supernet
 - Decouple the operations and parameters to simply support the sharing extent adjustment.
 - Adopt a control module to flexibly and more properly decide the sharing scheme.

Thanks for listening!

Contact us at:

Zixuan Zhou zhouzx17@gmail.com, Xuefei Ning foxdoraame@gmail.com, Prof. Yu Wang yu-wang@tsinghua.edu.cn

https://arxiv.org/abs/2207.07868

https://github.com/walkerning/aw_nas

Contributions, suggestions and discussions are all welcome!